
graphtik Documentation
Release src: 5.2.2, git: b47fd1f

Yahoo Vision and Machine Learning Team: Huy Nguyen, Arel Cordero, Pierre Garrigues, Tobi Baumgartner, Rob Hess

Mar 05, 2020

Contents

1 Lightweight computation graphs for Python 3
1.1 Operations . 3

1.1.1 The operation builder factory . 4
1.1.2 Operations are just functions . 6
1.1.3 Specifying graph structure: provides and needs . 6
1.1.4 Instantiating operations . 7
1.1.5 Modifiers on operation needs and provides . 9

1.2 Graph Composition . 13
1.2.1 The compose factory . 13
1.2.2 Simple composition of operations . 14
1.2.3 Running a computation graph . 15
1.2.4 Adding on to an existing computation graph . 15
1.2.5 More complicated composition: merging computation graphs 16

1.3 Plotting and Debugging . 17
1.3.1 Plotting . 17
1.3.2 Errors & debugging . 18

1.4 Architecture . 19
1.5 API Reference . 24

1.5.1 Module: op . 24
1.5.2 Module: modifiers . 26
1.5.3 Module: netop . 31
1.5.4 Module: network . 34
1.5.5 Module: plot . 41
1.5.6 Module: config . 42
1.5.7 Module: base . 44

1.6 Graphtik Changelog . 47
1.6.1 TODOs . 47
1.6.2 GitHub Releases . 47
1.6.3 Changelog . 47

2 Quick start 59

Python Module Index 61

Index 63

i

ii

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

(src: 5.2.2, git: b47fd1f , Mar 05, 2020)

It’s a DAG all the way down!

Contents 1

https://pypi.python.org/pypi/graphtik/
https://pypi.python.org/pypi/graphtik/
https://github.com/pygraphkit/graphtik/releases
https://pypi.python.org/pypi/graphtik/
https://travis-ci.org/pygraphkit/graphtik/builds
https://graphtik.readthedocs.org
https://codecov.io/gh/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik/issues

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

2 Contents

CHAPTER 1

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building and running ordered graphs of compu-
tations. The API posits a fair compromise between features and complexity, without precluding any. It can be used as
is to build machine learning pipelines for data science projects. It should be extendable to act as the core for a custom
ETL engine or a workflow-processor for interdependent files and processes.

Graphtik sprang from Graphkit to experiment with Python 3.6+ features.

1.1 Operations

At a high level, an operation is a node in a computation graph. Graphtik uses an Operation class to abstractly
represent these computations. The class specifies the requirements for a function to participate in a computation
graph; those are its input-data needs, and the output-data it provides.

The FunctionalOperation provides a lightweight wrapper around an arbitrary function to define those specifi-
cations.

class graphtik.op.FunctionalOperation(fn: Callable, name, needs: Union[Collection[T_co],
str, None] = None, provides: Union[Collection[T_co],
str, None] = None, aliases: Mapping[KT, VT_co]
= None, *, parents: Tuple = None, resched-
uled=None, endured=None, parallel=None, mar-
shalled=None, returns_dict=None, node_props: Map-
ping[KT, VT_co] = None)

An operation performing a callable (ie a function, a method, a lambda).

Parameters

• provides – Value names this operation provides (including aliases/sideffects).

• real_provides – Value names the underlying function provides (without aliases, with(!)
sideffects).

FIXME: real_provides not sure what it does with sideffects

3

https://github.com/yahoo/graphkit

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Tip: Use operation() builder class to build instances of this class instead.

__call__(*args, **kwargs)
Call self as a function.

__init__(fn: Callable, name, needs: Union[Collection[T_co], str, None] = None, provides:
Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None, *, par-
ents: Tuple = None, rescheduled=None, endured=None, parallel=None, marshalled=None,
returns_dict=None, node_props: Mapping[KT, VT_co] = None)

Build a new operation out of some function and its requirements.

See operation for the full documentation of parameters.

Parameters

• name – a name for the operation (e.g. ‘conv1’, ‘sum’, etc..); it will be prefixed by parents.

• needs – Names of input data objects this operation requires.

• provides – Names of the real output values the underlying function provides (without
aliases, with(!) sideffects)

• aliases – an optional mapping of real provides to additional ones, togetherher compris-
ing this operations provides.

• parents – a tuple wth the names of the parents, prefixing name, but also kept for equal-
ity/hash check.

• rescheduled – If true, underlying callable may produce a subset of provides, and the
plan must then reschedule after the operation has executed. In that case, it makes more
sense for the callable to returns_dict.

• endured – If true, even if callable fails, solution will reschedule; ignored if endurance
enabled globally.

• parallel – execute in parallel

• marshalled – If true, operation will be marshalled while computed, along with its
inputs & outputs. (usefull when run in parallel with a process pool).

• returns_dict – if true, it means the fn returns a dictionary with all provides, and no
further processing is done on them (i.e. the returned output-values are not zipped with
provides)

• node_props – added as-is into NetworkX graph

compute(named_inputs, outputs=None)→ dict
Compute (optional) asked outputs for the given named_inputs.

It is called by Network. End-users should simply call the operation with named_inputs as kwargs.

Parameters named_inputs – the input values with which to feed the computation.

Returns list Should return a list values representing the results of running the feed-forward com-
putation on inputs.

1.1.1 The operation builder factory

There is a better way to instantiate an FunctionalOperation than simply constructing it: use the operation
builder class:

4 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

class graphtik.operation(fn: Callable = None, *, name=None, needs: Union[Collection[T_co],
str, None] = None, provides: Union[Collection[T_co], str, None]
= None, aliases: Mapping[KT, VT_co] = None, rescheduled=None,
endured=None, parallel=None, marshalled=None, returns_dict=None,
node_props: Mapping[KT, VT_co] = None)

A builder for graph-operations wrapping functions.

Parameters

• fn (function) – The function used by this operation. This does not need to be specified
when the operation object is instantiated and can instead be set via __call__ later.

• name (str) – The name of the operation in the computation graph.

• needs – The list of (positionally ordered) names of the data needed by the operation to
receive as inputs, roughly corresponding to the arguments of the underlying fn.

See also needs & modifiers.

• provides – Names of output data this operation provides, which must correspond to the
returned values of the fn. If more than one given, those must be returned in an iterable,
unless returns_dict is true, in which case a dictionary with (at least) as many elements must
be returned.

See also provides & modifiers.

• aliases – an optional mapping of provides to additional ones

• rescheduled – If true, underlying callable may produce a subset of provides, and the
plan must then reschedule after the operation has executed. In that case, it makes more
sense for the callable to returns_dict.

• endured – If true, even if callable fails, solution will reschedule. ignored if endurance
enabled globally.

• parallel – execute in parallel

• marshalled – If true, operation will be marshalled while computed, along with its inputs
& outputs. (usefull when run in parallel with a process pool).

• returns_dict – if true, it means the fn returns dictionary with all provides, and no
further processing is done on them (i.e. the returned output-values are not zipped with
provides)

• node_props – added as-is into NetworkX graph

Returns when called, it returns a FunctionalOperation

Example:

This is an example of its use, based on the “builder pattern”:

>>> from graphtik import operation

>>> opb = operation(name='add_op')
>>> opb.withset(needs=['a', 'b'])
operation(name='add_op', needs=['a', 'b'], provides=[], fn=None)
>>> opb.withset(provides='SUM', fn=sum)
operation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

You may keep calling withset() till you invoke a final __call__() on the builder; then you get the actual
FunctionalOperation instance:

1.1. Operations 5

https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

>>> # Create `Operation` and overwrite function at the last moment.
>>> opb(sum)
FunctionalOperation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

Tip: Remember to call once more the builder class at the end, to get the actual operation instance.

__call__(fn: Callable = None, *, name=None, needs: Union[Collection[T_co], str, None]
= None, provides: Union[Collection[T_co], str, None] = None, aliases: Map-
ping[KT, VT_co] = None, rescheduled=None, endured=None, parallel=None, mar-
shalled=None, returns_dict=None, node_props: Mapping[KT, VT_co] = None) → graph-
tik.op.FunctionalOperation

This enables operation to act as a decorator or as a functional operation, for example:

@operator(name='myadd1', needs=['a', 'b'], provides=['c'])
def myadd(a, b):

return a + b

or:

def myadd(a, b):
return a + b

operator(name='myadd1', needs=['a', 'b'], provides=['c'])(myadd)

Parameters fn (function) – The function to be used by this operation.

Returns Returns an operation class that can be called as a function or composed into a compu-
tation graph.

withset(*, fn: Callable = None, name=None, needs: Union[Collection[T_co], str, None] = None, pro-
vides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None,
rescheduled=None, endured=None, parallel=None, marshalled=None, returns_dict=None,
node_props: Mapping[KT, VT_co] = None)→ graphtik.op.operation

See operation for arguments here.

1.1.2 Operations are just functions

At the heart of each operation is just a function, any arbitrary function. Indeed, you can instantiate an operation
with a function and then call it just like the original function, e.g.:

>>> from operator import add
>>> from graphtik import operation

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides=['a_plus_b'])(add)

>>> add_op(3, 4) == add(3, 4)
True

1.1.3 Specifying graph structure: provides and needs

Of course, each operation is more than just a function. It is a node in a computation graph, depending on other
nodes in the graph for input data and supplying output data that may be used by other nodes in the graph (or as a graph
output). This graph structure is specified via the provides and needs arguments to the operation constructor.
Specifically:

6 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• provides: this argument names the outputs (i.e. the returned values) of a given operation. If multiple
outputs are specified by provides, then the return value of the function comprising the operation must
return an iterable.

• needs: this argument names data that is needed as input by a given operation. Each piece of data named
in needs may either be provided by another operation in the same graph (i.e. specified in the provides
argument of that operation), or it may be specified as a named input to a graph computation (more on graph
computations here).

When many operations are composed into a computation graph (see Graph Composition for more on that), Graphtik
matches up the values in their needs and provides to form the edges of that graph.

Let’s look again at the operations from the script in Quick start, for example:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed
→˓"])
... (partial(abspow, p=3))
...)

Tip: Notice the use of functools.partial() to set parameter p to a constant value.

The needs and provides arguments to the operations in this script define a computation graph that looks like this
(where the oval are operations, squares/houses are data):

Tip: See Plotting on how to make diagrams like this.

1.1.4 Instantiating operations

There are several ways to instantiate an operation, each of which might be more suitable for different scenarios.

Decorator specification

If you are defining your computation graph and the functions that comprise it all in the same script, the decorator
specification of operation instances might be particularly useful, as it allows you to assign computation graph
structure to functions as they are defined. Here’s an example:

1.1. Operations 7

https://docs.python.org/3.8/library/functools.html#functools.partial

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

>>> from graphtik import operation, compose

>>> @operation(name='foo_op', needs=['a', 'b', 'c'], provides='foo')
... def foo(a, b, c):
... return c * (a + b)

>>> graphop = compose('foo_graph', foo)

Functional specification

If the functions underlying your computation graph operations are defined elsewhere than the script in which your
graph itself is defined (e.g. they are defined in another module, or they are system functions), you can use the functional
specification of operation instances:

>>> from operator import add, mul
>>> from graphtik import operation, compose

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides='sum')(add)
>>> mul_op = operation(name='mul_op', needs=['c', 'sum'], provides='product')(mul)

>>> graphop = compose('add_mul_graph', add_op, mul_op)

The functional specification is also useful if you want to create multiple operation instances from the same func-
tion, perhaps with different parameter values, e.g.:

>>> from functools import partial

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op1 = operation(name='pow_op1', needs=['a'], provides='a_squared')(mypow)
>>> pow_op2 = operation(name='pow_op2', needs=['a'], provides='a_cubed
→˓')(partial(mypow, p=3))

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2)

A slightly different approach can be used here to accomplish the same effect by creating an operation “builder pattern”:

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op_factory = operation(mypow, needs=['a'], provides='a_squared')

>>> pow_op1 = pow_op_factory(name='pow_op1')
>>> pow_op2 = pow_op_factory.withset(name='pow_op2', provides='a_cubed
→˓')(partial(mypow, p=3))
>>> pow_op3 = pow_op_factory(lambda a: 1, name='pow_op3')

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2, pow_op3)
>>> graphop(a=2)
{'a': 2, 'a_squared': 4, 'a_cubed': 1}

Note: You cannot call again the factory to overwrite the function, you have to use either the fn= keyword with
withset() method or call once more.

8 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

1.1.5 Modifiers on operation needs and provides

Modifiers change the behavior of specific needs or provides.

The needs and provides annotated with modifiers designate, for instance, optional function arguments, or “ghost”
sideffects.

class graphtik.modifiers.arg
Annotate a needs to map from its name in the inputs to a different argument-name.

Parameters fn_arg – The argument-name corresponding to this named-input.

Note: This extra mapping argument is needed either for optionals or for functions with
keywords-only arguments (like def func(*, foo, bar): ...), since inputs‘ are nor-
mally fed into functions by-position, not by-name.

Example:

In case the name of the function arguments is different from the name in the inputs (or just because the name in
the inputs is not a valid argument-name), you may map it with the 2nd argument of arg (or optional):

>>> from graphtik import operation, compose, arg

>>> def myadd(a, *, b):
... return a + b

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=['a', arg("name-in-inputs", "b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph', needs=['a', 'name-in-inputs'], provides=['sum'], x1
→˓ops:
+--FunctionalOperation(name='myadd',

needs=['a',
arg('name-in-inputs'-->'b')],
provides=['sum'],
fn='myadd'))

>>> graph.compute({"a": 5, "name-in-inputs": 4})['sum']
9

class graphtik.modifiers.optional
Annotate optionals needs corresponding to defaulted op-function arguments, . . .

received only if present in the inputs (when operation is invocated). The value of an optional is passed as a
keyword argument to the underlying function.

Example:

>>> from graphtik import operation, compose, optional

>>> def myadd(a, b=0):
... return a + b

Annotate b as optional argument (and notice it’s default value 0):

1.1. Operations 9

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=["a", optional("b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph',

needs=['a', optional('b')],
provides=['sum'],
x1 ops:

...

The graph works both with and without c provided in the inputs:

>>> graph(a=5, b=4)['sum']
9
>>> graph(a=5)
{'a': 5, 'sum': 5}

Like arg you may map input-name to a different function-argument:

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=['a', optional("quasi-real", "b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph', needs=['a', optional('quasi-real')], provides=['sum'],
→˓ x1 ops:
+--FunctionalOperation(name='myadd', needs=['a', optional('quasi-real'-->'b')],

→˓provides=['sum'], fn='myadd'))
>>> graph.compute({"a": 5, "quasi-real": 4})['sum']
9

class graphtik.modifiers.sideffect
sideffects dependencies participates in the graph but not exchanged with functions.

Both needs & provides may be designated as sideffects using this modifier. They work as usual while solving
the graph (compilation) but they do not interact with the operation’s function; specifically:

• input sideffects must exist in the inputs for an operation to kick-in;

• input sideffects are NOT fed into the function;

• output sideffects are NOT expected from the function;

• output sideffects are stored in the solution.

Their purpose is to describe operations that modify the internal state of some of their arguments (“side-effects”).

Example:

A typical use-case is to signify columns required to produce new ones in pandas dataframes:

>>> from graphtik import operation, compose, sideffect

>>> # Function appending a new dataframe column from two pre-existing ones.
>>> def addcolumns(df):
... df['sum'] = df['a'] + df['b']

10 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Designate a, b & sum column names as an sideffect arguments:

>>> graph = compose('mygraph',
... operation(
... name='addcolumns',
... needs=['df', sideffect('df.b')], # sideffect names can be anything
... provides=[sideffect('df.sum')])(addcolumns)
...)
>>> graph
NetworkOperation('mygraph', needs=['df', 'sideffect(df.b)'],

provides=['sideffect(df.sum)'], x1 ops:
+--FunctionalOperation(name='addcolumns', needs=['df', 'sideffect(df.b)'],

→˓provides=['sideffect(df.sum)'], fn='addcolumns'))

>>> df = pd.DataFrame({'a': [5, 0], 'b': [2, 1]}) # doctest: +SKIP
>>> graph({'df': df})['df'] # doctest: +SKIP

a b
0 5 2
1 0 1

We didn’t get the sum column because the b sideffect was unsatisfied. We have to add its key to the inputs (with
any value):

>>> graph({'df': df, sideffect("df.b"): 0})['df'] # doctest: +SKIP
a b sum

0 5 2 7
1 0 1 1

Note that regular data in needs and provides do not match same-named sideffects. That is, in the following
operation, the prices input is different from the sideffect(prices) output:

>>> def upd_prices(sales_df, prices):
... sales_df["Prices"] = prices

>>> operation(fn=upd_prices,
... name="upd_prices",
... needs=["sales_df", "price"],
... provides=[sideffect("price")])
operation(name='upd_prices', needs=['sales_df', 'price'],

provides=['sideffect(price)'], fn='upd_prices')

Note: An operation with sideffects outputs only, have functions that return no value at all (like the one above).
Such operation would still be called for their side-effects, if requested in outputs.

Tip: You may associate sideffects with other data to convey their relationships, simply by including their names
in the string - in the end, it’s just a string - but no enforcement will happen from graphtik, like:

>>> sideffect("price[sales_df]")
'sideffect(price[sales_df])'

class graphtik.modifiers.vararg
Annotate optionals needs to be fed as op-function’s *args when present in inputs.

See also:

1.1. Operations 11

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Consult also the example test-case in: test/test_op.py:test_varargs(), in the full sources of the
project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def addall(a, *b):
... return a + sum(b)

Designate b & c as an vararg arguments:

>>> graph = compose(
... 'mygraph',
... operation(
... name='addall',
... needs=['a', vararg('b'), vararg('c')],
... provides='sum'
...)(addall)
...)
>>> graph
NetworkOperation('mygraph',

needs=['a', optional('b'), optional('c')],
provides=['sum'],
x1 ops:

+--FunctionalOperation(name='addall', needs=['a', vararg('b'), vararg('c')],
→˓provides=['sum'], fn='addall'))

The graph works with and without any of b or c inputs:

>>> graph(a=5, b=2, c=4)['sum']
11
>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}
>>> graph(a=5)
{'a': 5, 'sum': 5}

class graphtik.modifiers.varargs
Like vararg, naming an optional iterable value in the inputs.

See also:

Consult also the example test-case in: test/test_op.py:test_varargs(), in the full sources of the
project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def enlist(a, *b):
... return [a] + list(b)

>>> graph = compose('mygraph',
... operation(name='enlist', needs=['a', varargs('b')],
... provides='sum')(enlist)
...)
>>> graph
NetworkOperation('mygraph',

(continues on next page)

12 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

(continued from previous page)

needs=['a', optional('b')],
provides=['sum'],
x1 ops:

+--FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum
→˓'], fn='enlist'))

The graph works with or without b in the inputs:

>>> graph(a=5, b=[2, 20])['sum']
[5, 2, 20]
>>> graph(a=5)
{'a': 5, 'sum': [5]}
>>> graph(a=5, b=0xBAD)
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:

1. Expected needs[varargs('b')] to be non-str iterables!
+++inputs: {'a': 5, 'b': 2989}
+++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=[

→˓'sum'], fn='enlist')

Attention: To avoid user mistakes, it does not accept strings (though iterables):

>>> graph(a=5, b="mistake")
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:

1. Expected needs[varargs('b')] to be non-str iterables!
+++inputs: {'a': 5, 'b': 'mistake'}
+++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=[

→˓'sum'], fn='enlist')

1.2 Graph Composition

Graphtik’s compose factory handles the work of tying together operation instances into a runnable computation
graph.

1.2.1 The compose factory

For now, here’s the specification of compose. We’ll get into how to use it in a second.

graphtik.compose(name, op1, *operations, outputs: Union[Collection[T_co], str, None] = None,
rescheduled=None, endured=None, parallel=None, marshalled=None, merge=False,
node_props=None)→ graphtik.netop.NetworkOperation

Composes a collection of operations into a single computation graph, obeying the merge property, if set in the
constructor.

Parameters

• name (str) – A optional name for the graph being composed by this object.

• op1 – syntactically force at least 1 operation

1.2. Graph Composition 13

https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• operations – Each argument should be an operation instance created using
operation.

• merge (bool) – If True, this compose object will attempt to merge together operation
instances that represent entire computation graphs. Specifically, if one of the operation
instances passed to this compose object is itself a graph operation created by an earlier
use of compose the sub-operations in that graph are compared against other operations
passed to this compose instance (as well as the sub-operations of other graphs passed to
this compose instance). If any two operations are the same (based on name), then that
operation is computed only once, instead of multiple times (one for each time the operation
appears).

• rescheduled – applies rescheduled to all contained operations

• endured – applies endurance to all contained operations

• parallel – mark all contained operations to be executed in parallel

• marshalled – mark all contained operations to be marshalled (usefull when run in par-
allel with a process pool).

• node_props – added as-is into NetworkX graph, to provide for filtering by
NetworkOperation.withset().

Returns Returns a special type of operation class, which represents an entire computation graph as
a single operation.

Raises ValueError – If the net‘ cannot produce the asked outputs from the given inputs.

1.2.2 Simple composition of operations

The simplest use case for compose is assembling a collection of individual operations into a runnable computation
graph. The example script from Quick start illustrates this well:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed
→˓"])
... (partial(abspow, p=3))
...)

The call here to compose() yields a runnable computation graph that looks like this (where the circles are operations,
squares are data, and octagons are parameters):

14 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

1.2.3 Running a computation graph

The graph composed in the example above in Simple composition of operations can be run by simply calling it with a
dictionary argument whose keys correspond to the names of inputs to the graph and whose values are the corresponding
input values. For example, if graph is as defined above, we can run it like this:

Run the graph and request all of the outputs.
>>> out = graphop(a=2, b=5)
>>> out
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

Producing a subset of outputs

By default, calling a graph-operation on a set of inputs will yield all of that graph’s outputs. You can use the outputs
parameter to request only a subset. For example, if graphop is as above:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop.compute({'a': 2, 'b': 5}, outputs="a_minus_ab")
>>> out
{'a_minus_ab': -8}

When using outputs to request only a subset of a graph’s outputs, Graphtik executes only the operation nodes
in the graph that are on a path from the inputs to the requested outputs. For example, the abspow1 operation will not
be executed here.

Short-circuiting a graph computation

You can short-circuit a graph computation, making certain inputs unnecessary, by providing a value in the graph that
is further downstream in the graph than those inputs. For example, in the graph-operation we’ve been working with,
you could provide the value of a_minus_ab to make the inputs a and b unnecessary:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop(a_minus_ab=-8)
>>> out
{'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

When you do this, any operation nodes that are not on a path from the downstream input to the requested outputs
(i.e. predecessors of the downstream input) are not computed. For example, the mul1 and sub1 operations are not
executed here.

This can be useful if you have a graph-operation that accepts alternative forms of the same input. For example, if
your graph-operation requires a PIL.Image as input, you could allow your graph to be run in an API server by
adding an earlier operation that accepts as input a string of raw image data and converts that data into the needed
PIL.Image. Then, you can either provide the raw image data string as input, or you can provide the PIL.Image if
you have it and skip providing the image data string.

1.2.4 Adding on to an existing computation graph

Sometimes you will have an existing computation graph to which you want to add operations. This is simple, since
compose can compose whole graphs along with individual operation instances. For example, if we have graph
as above, we can add another operation to it to create a new graph:

1.2. Graph Composition 15

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

>>> # Add another subtraction operation to the graph.
>>> bigger_graph = compose("bigger_graph",
... graphop,
... operation(name="sub2", needs=["a_minus_ab", "c"], provides="a_minus_ab_minus_c
→˓")(sub)
...)

>>> # Run the graph and print the output.
>>> sol = bigger_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["a_minus_ab_minus_c
→˓"])
>>> sol
{'a_minus_ab_minus_c': -13}

This yields a graph which looks like this (see Plotting):

>>> bigger_graph.plot('bigger_example_graph.svg', solution=sol)

1.2.5 More complicated composition: merging computation graphs

Sometimes you will have two computation graphs—perhaps ones that share operations—you want to combine into
one. In the simple case, where the graphs don’t share operations or where you don’t care whether a duplicated
operation is run multiple (redundant) times, you can just do something like this:

combined_graph = compose("combined_graph", graph1, graph2)

However, if you want to combine graphs that share operations and don’t want to pay the price of running redun-
dant computations, you can set the merge parameter of compose() to True. This will consolidate redundant
operation nodes (based on name) into a single node. For example, let’s say we have graphop, as in the exam-
ples above, along with this graph:

>>> # This graph shares the "mul1" operation with graph.
>>> another_graph = compose("another_graph",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="mul2", needs=["c", "ab"], provides=["cab"])(mul)
...)

We can merge graphop and another_graph like so, avoiding a redundant mul1 operation:

>>> merged_graph = compose("merged_graph", graphop, another_graph, merge=True)
>>> print(merged_graph)
NetworkOperation('merged_graph',

needs=['a', 'b', 'ab', 'a_minus_ab', 'c'],
provides=['ab', 'a_minus_ab', 'abs_a_minus_ab_cubed', 'cab'],
x4 ops:

...

This merged_graph will look like this:

As always, we can run computations with this graph by simply calling it:

>>> merged_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["cab"])
{'cab': 50}

16 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

1.3 Plotting and Debugging

1.3.1 Plotting

For Errors & debugging it is necessary to visualize the graph-operation. You may plot the original plot and annotate
on top the execution plan and solution of the last computation, calling methods with arguments like this:

netop.plot(show=True) # open a matplotlib window
netop.plot("netop.svg") # other supported formats: png, jpg, pdf, ...
netop.plot() # without arguments return a pydot.DOT object
netop.plot(solution=solution) # annotate graph with solution values

. . . or for the last . . . :

solution.plot(...)

Fig. 1: The legend for all graphtik diagrams, generated by legend().

The same Plotter.plot() method applies also for:

• NetworkOperation

• Network

• ExecutionPlan

• Solution

each one capable to producing diagrams with increasing complexity. Whenever possible, the top-level plot() meth-
ods will delegate to the ones below; specifically, the netop keeps a transient reference to the last plan. BUT the plan
does not hold such a reference, you have to plot the solution.

For instance, when a net-operation has just been composed, plotting it will come out bare bone, with just the 2 types
of nodes (data & operations), their dependencies, and the sequence of the execution-plan.

But as soon as you run it, the net plot calls will print more of the internals. Internally it delegates to
ExecutionPlan.plot() of NetworkOperation.last_plan attribute, which caches the last run to facili-
tate debugging. If you want the bare-bone diagram, plot the network:

netop.net.plot(...)

If you want all details, plot the solution:

solution.net.plot(...)

Note: For plots, Graphviz program must be in your PATH, and pydot & matplotlib python packages installed.
You may install both when installing graphtik with its plot extras:

pip install graphtik[plot]

1.3. Plotting and Debugging 17

https://graphviz.org

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Tip: The pydot.Dot instances returned by Plotter.plot() are rendered directly in Jupyter/IPython notebooks
as SVG images.

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px; width: 100%"})

Check default_jupyter_render for defaults.

1.3.2 Errors & debugging

Graphs may become arbitrary deep. Launching a debugger-session to inspect deeply nested stacks is notoriously hard

As a workaround, you may increase the logging verbosity.

Tip: The various network objects print augmented string-representations when graphtik.network.log
Logger is eventually DEBUG-enabled.

Additionally, when some operation fails, the original exception gets annotated with the following properties, as a
debug aid:

>>> from graphtik import compose, operation
>>> from pprint import pprint

>>> def scream(*args):
... raise ValueError("Wrong!")

>>> try:
... compose("errgraph",
... operation(name="screamer", needs=['a'], provides=["foo"])(scream)
...)(a=None)
... except ValueError as ex:
... pprint(ex.jetsam)
{'aliases': None,
'args': {'kwargs': {}, 'positional': [None], 'varargs': []},
'network': Network(x3 nodes, x1 ops:

+--a
+--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream

→˓')
+--foo),

'operation': FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn=
→˓'scream'),
'outputs': None,
'plan': ExecutionPlan(needs=['a'], provides=['foo'], x1 steps:
+--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream

→˓')),
'provides': None,
'results_fn': None,
'results_op': None,
'solution': {'a': None},
'task': OpTask(FunctionalOperation(name='screamer', needs=['a'], provides=['foo'],
→˓fn='scream'), sol_keys=['a'])}

18 Chapter 1. Lightweight computation graphs for Python

https://pypi.org/project/pydot/
https://docs.python.org/3.8/library/logging.html#logging.Logger

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

In interactive REPL console you may use this to get the last raised exception:

import sys

sys.last_value.jetsam

The following annotated attributes might have meaningful value on an exception:

network the innermost network owning the failed operation/function

plan the innermost plan that executing when a operation crashed

operation the innermost operation that failed

args either the input arguments list fed into the function, or a dict with both args & kwargs keys in it.

outputs the names of the outputs the function was expected to return

provides the names eventually the graph needed from the operation; a subset of the above, and not always what
has been declared in the operation.

fn_results the raw results of the operation’s function, if any

op_results the results, always a dictionary, as matched with operation’s provides

solution an instance of Solution, contains inputs & outputs till the error happened; note that Solution.
executed contain the list of executed operations so far.

Of course you may use many of the above “jetsam” values when plotting.

Note: The Plotting capabilities, along with the above annotation of exceptions with the internal state of plan/operation
often renders a debugger session unnecessary. But since the state of the annotated values might be incomplete, you
may not always avoid one.

1.4 Architecture

COMPUTE

computation

The definition & execution of networked operation is split in 1+2 phases:

• COMPOSITION

• COMPILATION

• EXECUTION

. . . it is constrained by these IO data-structures:

• operation(s) (with needs & provides for each one)

• given inputs

• asked outputs

. . . populates these low-level data-structures:

• network graph (COMPOSE time)

• execution dag (COMPILE time)

• execution steps (COMPILE time)

1.4. Architecture 19

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• solution (EXECUTE time)

. . . and utilizes these main classes:

graphtik.op.FunctionalOperation
graphtik.netop.NetworkOperation
graphtik.network.Network
graphtik.network.ExecutionPlan
graphtik.network.Solution

compose

COMPOSITION The phase where operations are constructed and grouped into netops and corresponding networks.

Tip:

• Use operation() builder class to construct FunctionalOperation instances.

• Use compose() factory to prepare the net internally, and build NetworkOperation instances.

compile

COMPILATION The phase where the Network creates a new execution plan by pruning all graph nodes into a
subgraph dag, and deriving the execution steps.

execute

EXECUTION

sequential The phase where the ExecutionPlan calls the underlying functions of all operations contained in
execution steps, with inputs/outputs taken from the solution.

Currently there are 2 ways to execute:

• sequential

• parallel, with a multiprocessing.ProcessPool

Plans may abort their execution by setting the abort run global flag.

parallel

parallel execution

execution pool

task Execute operations in parallel, with a thread pool or process pool (instead of sequential). Operations and netop
are marked as such on construction, or enabled globally from configurations.

Note that sideffects are not expected to function with process pools, certainly not when marshalling is enabled.

process pool When the multiprocessing.Pool() class is used for parallel execution, the tasks must be com-
municated to/from the worker process, which requires pickling, and that may fail. With pickling failures you
may try marshalling with dill library, and see if that helps.

Note that sideffects are not expected to function at all. certainly not when marshalling is enabled.

thread pool When the multiprocessing.dummy.Pool() class for parallel execution, the tasks are run in
process, so no marshalling is needed.

marshalling Pickling parallel operations and their inputs/outputs using the dill module. It is configured either
globally with set_marshal_tasks() or set with a flag on each operation / netop.

20 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/library/pickle.html
https://dill.readthedocs.io/en/latest/index.html#module-dill

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Note that sideffects do not work when this is enabled.

configurations The functions controlling compile & execution globally are defined in config module; they under-
lying global data are stored in contextvars.ContextVar instances, to allow for nested control.

All boolean configuration flags are tri-state (None, False, True), allowing to “force” all operations,
when they are not set to the None value. All of them default to None (false).

graph

network graph The Network.graph (currently a DAG) contains all FunctionalOperation and
_DataNode nodes of some netop.

They are layed out and connected by repeated calls of Network._append_operation() by Network
constructor.

This graph is then pruned to extract the dag, and the execution steps are calculated, all ingredients for a new
ExecutionPlan.

dag

execution dag

solution dag There are 2 directed-acyclic-graphs instances used:

• the ExecutionPlan.dag, in the execution plan, which contains the pruned nodes, used to decide the
execution steps;

• the Solution.dag in the solution, which derives the canceled operations due to rescheduled/failed
operations upstream.

steps

execution steps The ExecutionPlan.steps contains a list of the operation-nodes only from the dag, topologi-
cally sorted, and interspersed with instruction steps needed to compute the asked outputs from the given inputs.

It is built by Network._build_execution_steps() based on the subgraph dag.

The only instruction step is for performing evictions.

evictions The _EvictInstruction steps erase items from solution as soon as they are not needed further down
the dag, to reduce memory footprint while computing.

solution A Solution instance created internally by NetworkOperation.compute() to hold the values both
inputs & outputs, and the status of executed operations. It is based on a collections.ChainMap, to keep
one dictionary for each operation executed +1 for inputs.

The results of the last operation executed “wins” in the final outputs produced, BUT while executing, the needs
of each operation receive the solution values in reversed order, that is, the 1st operation result (or given input)
wins for some needs name.

Rational:

During execution we want stability (the same input value used by all operations), and that is most
important when consuming input values - otherwise, we would use (possibly overwritten and thus
changing)) intermediate ones.

But at the end we want to affect the calculation results by adding operations into some netop -
furthermore, it wouldn’t be very useful to get back the given inputs in case of overwrites.

overwrites Values in the solution that have been written by more than one operations, accessed by Solution.
overwrites:

net

1.4. Architecture 21

https://docs.python.org/3.8/library/contextvars.html#contextvars.ContextVar
https://docs.python.org/3.8/library/collections.html#collections.ChainMap

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

network the Network contains a graph of operations and can compile an execution plan or prune a cloned network
for given inputs/outputs/node predicate.

plan

execution plan Class ExecutionPlan perform the execution phase which contains the dag and the steps.

Compileed execution plans are cached in Network._cached_plans across runs with (inputs, outputs, pred-
icate) as key.

inputs The named input values that are fed into an operation (or netop) through Operation.compute() method
according to its needs.

These values are either:

• given by the user to the outer netop, at the start of a computation, or

• derived from solution using needs as keys, during intermediate execution.

outputs The dictionary of computed values returned by an operation (or a netop) matching its provides, when method
Operation.compute() is called.

Those values are either:

• retained in the solution, internally during execution, keyed by the respective provide, or

• returned to user after the outer netop has finished computation.

When no specific outputs requested from a netop, NetworkOperation.compute() returns all intermedi-
ate inputs along with the outputs, that is, no evictions happens.

An operation may return partial outputs.

returns dictionary When an operation is marked with this flag, the underlying function is not expected to return a
sequence but a dictionary; hence, no “zipping” of outputs/provides takes place.

operation Either the abstract notion of an action with specified needs and provides, or the concrete wrapper
FunctionalOperation for arbitrary functions (any callable), that feeds on inputs and update outputs,
from/to solution, or given-by/returned-to the user by a netop.

The distinction between needs/provides and inputs/outputs is akin to function parameters and arguments during
define-time and run-time.

netop

network operation The NetworkOperation class holding a network of operations.

needs A list of (positionally ordered) names of the data needed by an operation to receive as inputs, roughly cor-
responding to the arguments of the underlying callable. The corresponding data-values will be extracted from
solution (or given by the user) when Operation.compute() is called during execution.

Modifiers may annotate certain names as optionals, sideffects, or map them to differently named function argu-
ments.

The graph is laid out by matching the needs & provides of all operations.

provides A list of names to be zipped with the data-values produced when the operation’s underlying callable exe-
cutes. The resulting outputs dictionary will be stored into the solution or returned to the user after Operation.
compute() is called during execution.

Modifiers may annotate certain names as sideffects.

The graph is laid out by matching the needs & provides of all operations.

modifiers Annotations on specific arguments of needs and/or provides such as optionals & sideffects (see
graphtik.modifiers module).

22 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

optionals Needs corresponding either:

• to function arguments-with-defaults (annotated with optional), or

• to *args (annotated with vararg & varargs),

that do not hinder execution of the operation if absent from inputs.

sideffects Fictive needs or provides not consumed/produced by the underlying function of an operation, annotated
with sideffect. A sideffect participates in the compilation of the graph, and is updated into the solution, but
is never given/asked to/from functions.

prune

pruning A subphase of compilation performed by method Network._prune_graph(), which extracts a sub-
graph dag that does not contain any unsatisfied operations.

It topologically sorts the graph, and prunes based on given inputs, asked outputs, node predicate and operation
needs & provides.

unsatisfied operation The core of pruning & rescheduling, performed by network.
_unsatisfied_operations() function, which collects all operations that fall into any of these 2
cases:

• they have needs that do not correspond to any of the given inputs or the intermediately computed outputs
of the solution;

• all their provides are NOT needed by any other operation, nor are asked as outputs.

reschedule

rescheduling

partial outputs

partial operation

canceled operation The partial pruning of the solution’s dag during execution. It happens when any of these 2
conditions apply:

• an operation is marked with the FunctionalOperation.rescheduled attribute, which means that
its underlying callable may produce only a subset of its provides (partial outputs);

• endurance is enabled, either globally (in the configurations), or for a specific operation.

the solution must then reschedule the remaining operations downstream, and possibly cancel some of those (
assigned in Solution.canceled).

endurance Keep executing as many operations as possible, even if some of them fail. Endurance for
an operation is enabled if set_endure_operations() is true globally in the configurations or if
FunctionalOperation.endurance is true.

You may interrogate Solution.executed to discover the status of each executed operations or call
scream_if_incomplete().

predicate

node predicate A callable(op, node-data) that should return true for nodes to be included in graph during compilation.

abort run A global configurations flag that when set with abort_run() function, it halts the execution of all
currently or future plans.

It is reset automatically on every call of NetworkOperation.compute() (after a successful intermediate
compilation), or manually, by calling reset_abort().

1.4. Architecture 23

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

1.5 API Reference

graphtik Lightweight computation graphs for Python.
graphtik.op About operation nodes (but not net-ops to break cycle).
graphtik.modifiers Modifiers change the behavior of specific needs or pro-

vides.
graphtik.netop About network operations (those based on graphs)
graphtik.network Compile & execute network graphs of operations.
graphtik.plot
graphtik.config Configurations for network execution, and utilities on

them.
graphtik.base Generic or specific utilities

1.5.1 Module: op

About operation nodes (but not net-ops to break cycle).

class graphtik.op.FunctionalOperation(fn: Callable, name, needs: Union[Collection[T_co],
str, None] = None, provides: Union[Collection[T_co],
str, None] = None, aliases: Mapping[KT, VT_co]
= None, *, parents: Tuple = None, resched-
uled=None, endured=None, parallel=None, mar-
shalled=None, returns_dict=None, node_props: Map-
ping[KT, VT_co] = None)

An operation performing a callable (ie a function, a method, a lambda).

Parameters

• provides – Value names this operation provides (including aliases/sideffects).

• real_provides – Value names the underlying function provides (without aliases, with(!)
sideffects).

FIXME: real_provides not sure what it does with sideffects

Tip: Use operation() builder class to build instances of this class instead.

compute(named_inputs, outputs=None)→ dict
Compute (optional) asked outputs for the given named_inputs.

It is called by Network. End-users should simply call the operation with named_inputs as kwargs.

Parameters named_inputs – the input values with which to feed the computation.

Returns list Should return a list values representing the results of running the feed-forward com-
putation on inputs.

withset(**kw)→ graphtik.op.FunctionalOperation
Make a clone with the some values replaced.

Attention: Using namedtuple._replace() would not pass through cstor, so would not get a
nested name with parents, not arguments validation.

24 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

class graphtik.op.Operation
An abstract class representing an action with compute().

compute(named_inputs, outputs=None)
Compute (optional) asked outputs for the given named_inputs.

It is called by Network. End-users should simply call the operation with named_inputs as kwargs.

Parameters named_inputs – the input values with which to feed the computation.

Returns list Should return a list values representing the results of running the feed-forward com-
putation on inputs.

graphtik.op.as_renames(i, argname)
parses a list of (source–>destination) from dict, list-of-2-items, single 2-tuple.

graphtik.op.is_reschedule_operations()→ Optional[bool]

class graphtik.op.operation(fn: Callable = None, *, name=None, needs:
Union[Collection[T_co], str, None] = None, provides:
Union[Collection[T_co], str, None] = None, aliases: Mapping[KT,
VT_co] = None, rescheduled=None, endured=None, parallel=None,
marshalled=None, returns_dict=None, node_props: Mapping[KT,
VT_co] = None)

A builder for graph-operations wrapping functions.

Parameters

• fn (function) – The function used by this operation. This does not need to be specified
when the operation object is instantiated and can instead be set via __call__ later.

• name (str) – The name of the operation in the computation graph.

• needs – The list of (positionally ordered) names of the data needed by the operation to
receive as inputs, roughly corresponding to the arguments of the underlying fn.

See also needs & modifiers.

• provides – Names of output data this operation provides, which must correspond to the
returned values of the fn. If more than one given, those must be returned in an iterable,
unless returns_dict is true, in which case a dictionary with (at least) as many elements must
be returned.

See also provides & modifiers.

• aliases – an optional mapping of provides to additional ones

• rescheduled – If true, underlying callable may produce a subset of provides, and the
plan must then reschedule after the operation has executed. In that case, it makes more
sense for the callable to returns_dict.

• endured – If true, even if callable fails, solution will reschedule. ignored if endurance
enabled globally.

• parallel – execute in parallel

• marshalled – If true, operation will be marshalled while computed, along with its inputs
& outputs. (usefull when run in parallel with a process pool).

• returns_dict – if true, it means the fn returns dictionary with all provides, and no
further processing is done on them (i.e. the returned output-values are not zipped with
provides)

• node_props – added as-is into NetworkX graph

1.5. API Reference 25

https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Returns when called, it returns a FunctionalOperation

Example:

This is an example of its use, based on the “builder pattern”:

>>> from graphtik import operation

>>> opb = operation(name='add_op')
>>> opb.withset(needs=['a', 'b'])
operation(name='add_op', needs=['a', 'b'], provides=[], fn=None)
>>> opb.withset(provides='SUM', fn=sum)
operation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

You may keep calling withset() till you invoke a final __call__() on the builder; then you get the actual
FunctionalOperation instance:

>>> # Create `Operation` and overwrite function at the last moment.
>>> opb(sum)
FunctionalOperation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

Tip: Remember to call once more the builder class at the end, to get the actual operation instance.

withset(*, fn: Callable = None, name=None, needs: Union[Collection[T_co], str, None] = None, pro-
vides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None,
rescheduled=None, endured=None, parallel=None, marshalled=None, returns_dict=None,
node_props: Mapping[KT, VT_co] = None)→ graphtik.op.operation

See operation for arguments here.

graphtik.op.reparse_operation_data(name, needs, provides)
Validate & reparse operation data as lists.

As a separate function to be reused by client code when building operations and detect errors early.

1.5.2 Module: modifiers

Modifiers change the behavior of specific needs or provides.

The needs and provides annotated with modifiers designate, for instance, optional function arguments, or “ghost”
sideffects.

class graphtik.modifiers.arg
Annotate a needs to map from its name in the inputs to a different argument-name.

Parameters fn_arg – The argument-name corresponding to this named-input.

Note: This extra mapping argument is needed either for optionals or for functions with
keywords-only arguments (like def func(*, foo, bar): ...), since inputs‘ are nor-
mally fed into functions by-position, not by-name.

Example:

In case the name of the function arguments is different from the name in the inputs (or just because the name in
the inputs is not a valid argument-name), you may map it with the 2nd argument of arg (or optional):

26 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

>>> from graphtik import operation, compose, arg

>>> def myadd(a, *, b):
... return a + b

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=['a', arg("name-in-inputs", "b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph', needs=['a', 'name-in-inputs'], provides=['sum'], x1
→˓ops:
+--FunctionalOperation(name='myadd',

needs=['a',
arg('name-in-inputs'-->'b')],
provides=['sum'],
fn='myadd'))

>>> graph.compute({"a": 5, "name-in-inputs": 4})['sum']
9

class graphtik.modifiers.optional
Annotate optionals needs corresponding to defaulted op-function arguments, . . .

received only if present in the inputs (when operation is invocated). The value of an optional is passed as a
keyword argument to the underlying function.

Example:

>>> from graphtik import operation, compose, optional

>>> def myadd(a, b=0):
... return a + b

Annotate b as optional argument (and notice it’s default value 0):

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=["a", optional("b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph',

needs=['a', optional('b')],
provides=['sum'],
x1 ops:

...

The graph works both with and without c provided in the inputs:

>>> graph(a=5, b=4)['sum']
9
>>> graph(a=5)
{'a': 5, 'sum': 5}

Like arg you may map input-name to a different function-argument:

1.5. API Reference 27

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=['a', optional("quasi-real", "b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph', needs=['a', optional('quasi-real')], provides=['sum'],
→˓ x1 ops:
+--FunctionalOperation(name='myadd', needs=['a', optional('quasi-real'-->'b')],

→˓provides=['sum'], fn='myadd'))
>>> graph.compute({"a": 5, "quasi-real": 4})['sum']
9

class graphtik.modifiers.sideffect
sideffects dependencies participates in the graph but not exchanged with functions.

Both needs & provides may be designated as sideffects using this modifier. They work as usual while solving
the graph (compilation) but they do not interact with the operation’s function; specifically:

• input sideffects must exist in the inputs for an operation to kick-in;

• input sideffects are NOT fed into the function;

• output sideffects are NOT expected from the function;

• output sideffects are stored in the solution.

Their purpose is to describe operations that modify the internal state of some of their arguments (“side-effects”).

Example:

A typical use-case is to signify columns required to produce new ones in pandas dataframes:

>>> from graphtik import operation, compose, sideffect

>>> # Function appending a new dataframe column from two pre-existing ones.
>>> def addcolumns(df):
... df['sum'] = df['a'] + df['b']

Designate a, b & sum column names as an sideffect arguments:

>>> graph = compose('mygraph',
... operation(
... name='addcolumns',
... needs=['df', sideffect('df.b')], # sideffect names can be anything
... provides=[sideffect('df.sum')])(addcolumns)
...)
>>> graph
NetworkOperation('mygraph', needs=['df', 'sideffect(df.b)'],

provides=['sideffect(df.sum)'], x1 ops:
+--FunctionalOperation(name='addcolumns', needs=['df', 'sideffect(df.b)'],

→˓provides=['sideffect(df.sum)'], fn='addcolumns'))

>>> df = pd.DataFrame({'a': [5, 0], 'b': [2, 1]}) # doctest: +SKIP
>>> graph({'df': df})['df'] # doctest: +SKIP

a b
0 5 2
1 0 1

28 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

We didn’t get the sum column because the b sideffect was unsatisfied. We have to add its key to the inputs (with
any value):

>>> graph({'df': df, sideffect("df.b"): 0})['df'] # doctest: +SKIP
a b sum

0 5 2 7
1 0 1 1

Note that regular data in needs and provides do not match same-named sideffects. That is, in the following
operation, the prices input is different from the sideffect(prices) output:

>>> def upd_prices(sales_df, prices):
... sales_df["Prices"] = prices

>>> operation(fn=upd_prices,
... name="upd_prices",
... needs=["sales_df", "price"],
... provides=[sideffect("price")])
operation(name='upd_prices', needs=['sales_df', 'price'],

provides=['sideffect(price)'], fn='upd_prices')

Note: An operation with sideffects outputs only, have functions that return no value at all (like the one above).
Such operation would still be called for their side-effects, if requested in outputs.

Tip: You may associate sideffects with other data to convey their relationships, simply by including their names
in the string - in the end, it’s just a string - but no enforcement will happen from graphtik, like:

>>> sideffect("price[sales_df]")
'sideffect(price[sales_df])'

class graphtik.modifiers.vararg
Annotate optionals needs to be fed as op-function’s *args when present in inputs.

See also:

Consult also the example test-case in: test/test_op.py:test_varargs(), in the full sources of the
project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def addall(a, *b):
... return a + sum(b)

Designate b & c as an vararg arguments:

>>> graph = compose(
... 'mygraph',
... operation(
... name='addall',
... needs=['a', vararg('b'), vararg('c')],
... provides='sum'
...)(addall)

(continues on next page)

1.5. API Reference 29

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

(continued from previous page)

...)
>>> graph
NetworkOperation('mygraph',

needs=['a', optional('b'), optional('c')],
provides=['sum'],
x1 ops:

+--FunctionalOperation(name='addall', needs=['a', vararg('b'), vararg('c')],
→˓provides=['sum'], fn='addall'))

The graph works with and without any of b or c inputs:

>>> graph(a=5, b=2, c=4)['sum']
11
>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}
>>> graph(a=5)
{'a': 5, 'sum': 5}

class graphtik.modifiers.varargs
Like vararg, naming an optional iterable value in the inputs.

See also:

Consult also the example test-case in: test/test_op.py:test_varargs(), in the full sources of the
project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def enlist(a, *b):
... return [a] + list(b)

>>> graph = compose('mygraph',
... operation(name='enlist', needs=['a', varargs('b')],
... provides='sum')(enlist)
...)
>>> graph
NetworkOperation('mygraph',

needs=['a', optional('b')],
provides=['sum'],
x1 ops:

+--FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum
→˓'], fn='enlist'))

The graph works with or without b in the inputs:

>>> graph(a=5, b=[2, 20])['sum']
[5, 2, 20]
>>> graph(a=5)
{'a': 5, 'sum': [5]}
>>> graph(a=5, b=0xBAD)
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:

1. Expected needs[varargs('b')] to be non-str iterables!

(continues on next page)

30 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

(continued from previous page)

+++inputs: {'a': 5, 'b': 2989}
+++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=[

→˓'sum'], fn='enlist')

Attention: To avoid user mistakes, it does not accept strings (though iterables):

>>> graph(a=5, b="mistake")
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:

1. Expected needs[varargs('b')] to be non-str iterables!
+++inputs: {'a': 5, 'b': 'mistake'}
+++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=[

→˓'sum'], fn='enlist')

1.5.3 Module: netop

About network operations (those based on graphs)

class graphtik.netop.NetworkOperation(operations, name, *, outputs=None, predicate:
Callable[[Any, Mapping[KT, VT_co]], bool] = None,
rescheduled=None, endured=None, parallel=None,
marshalled=None, merge=None, node_props=None)

An operation that can compute a network-graph of operations.

Tip: Use compose() factory to prepare the net and build instances of this class.

compile(inputs=None, outputs=<UNSET>, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] =
<UNSET>)→ graphtik.network.ExecutionPlan

Produce a plan for the given args or outputs/predicate narrowed earlier.

Parameters

• named_inputs – a string or a list of strings that should be fed to the needs of all opera-
tions.

• outputs – A string or a list of strings with all data asked to compute. If None, all
possible intermediate outputs will be kept. If not given, those set by a previous call to
withset() or cstor are used.

• predicate – Will be stored and applied on the next compute() or compile(). If
not given, those set by a previous call to withset() or cstor are used.

Returns the execution plan satisfying the given inputs, outputs & predicate

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

• If solution does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

1.5. API Reference 31

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

compute(named_inputs: Mapping[KT, VT_co], outputs: Union[Collection[T_co], str, None] = <UN-
SET>, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = <UNSET>) → graph-
tik.network.Solution

Compile a plan & execute the graph, sequentially or parallel.

Attention: If intermediate compilation is successful, the “global abort run flag is reset before the
execution starts.

Parameters

• named_inputs – A maping of names –> values that will be fed to the needs of all
operations. Cloned, not modified.

• outputs – A string or a list of strings with all data asked to compute. If None, all
intermediate data will be kept.

Returns The solution which contains the results of each operation executed +1 for inputs in
separate dictionaries.

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

• If plan does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

See also Operation.compute().

last_plan = None
The execution_plan of the last call to compute(), stored as debugging aid.

name = None
The name for the new netop, used when nesting them.

outputs = None
The outputs names (possibly None) used to compile the plan.

predicate = None
The node predicate is a 2-argument callable(op, node-data) that should return true for nodes to include; if
None, all nodes included.

withset(outputs: Union[Collection[T_co], str, None] = <UNSET>, predicate: Callable[[Any, Map-
ping[KT, VT_co]], bool] = <UNSET>, *, name=None, rescheduled=None, endured=None,
parallel=None, marshalled=None)→ graphtik.netop.NetworkOperation

Return a copy with a network pruned for the given needs & provides.

Parameters

32 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• outputs – Will be stored and applied on the next compute() or compile(). If not
given, the value of this instance is conveyed to the clone.

• predicate – Will be stored and applied on the next compute() or compile(). If
not given, the value of this instance is conveyed to the clone.

• name – the name for the new netop:

– if None, the same name is kept;

– if True, a distinct name is devised:

<old-name>-<uid>

– otherwise, the given name is applied.

• rescheduled – applies rescheduled to all contained operations

• endured – applies endurance to all contained operations

• parallel – mark all contained operations to be executed in parallel

• marshalled – mark all contained operations to be marshalled (usefull when run in
parallel with a process pool).

Returns A narrowed netop clone, which MIGHT be empty!*

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

graphtik.netop.compose(name, op1, *operations, outputs: Union[Collection[T_co], str,
None] = None, rescheduled=None, endured=None, parallel=None,
marshalled=None, merge=False, node_props=None) → graph-
tik.netop.NetworkOperation

Composes a collection of operations into a single computation graph, obeying the merge property, if set in the
constructor.

Parameters

• name (str) – A optional name for the graph being composed by this object.

• op1 – syntactically force at least 1 operation

• operations – Each argument should be an operation instance created using
operation.

• merge (bool) – If True, this compose object will attempt to merge together operation
instances that represent entire computation graphs. Specifically, if one of the operation
instances passed to this compose object is itself a graph operation created by an earlier
use of compose the sub-operations in that graph are compared against other operations
passed to this compose instance (as well as the sub-operations of other graphs passed to
this compose instance). If any two operations are the same (based on name), then that
operation is computed only once, instead of multiple times (one for each time the operation
appears).

• rescheduled – applies rescheduled to all contained operations

• endured – applies endurance to all contained operations

• parallel – mark all contained operations to be executed in parallel

1.5. API Reference 33

https://docs.python.org/3.8/library/exceptions.html#ValueError
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• marshalled – mark all contained operations to be marshalled (usefull when run in par-
allel with a process pool).

• node_props – added as-is into NetworkX graph, to provide for filtering by
NetworkOperation.withset().

Returns Returns a special type of operation class, which represents an entire computation graph as
a single operation.

Raises ValueError – If the net‘ cannot produce the asked outputs from the given inputs.

1.5.4 Module: network

Compile & execute network graphs of operations.

exception graphtik.network.AbortedException
Raised from Network when abort_run() is called, and contains the solution . . .

with any values populated so far.

__module__ = 'graphtik.network'

__weakref__
list of weak references to the object (if defined)

class graphtik.network.ExecutionPlan
A pre-compiled list of operation steps that can execute for the given inputs/outputs.

It is the result of the network’s compilation phase.

Note the execution plan’s attributes are on purpose immutable tuples.

net
The parent Network

needs
An iset with the input names needed to exist in order to produce all provides.

provides
An iset with the outputs names produces when all inputs are given.

dag
The regular (not broken) pruned subgraph of net-graph.

steps
The tuple of operation-nodes & instructions needed to evaluate the given inputs & asked outputs, free
memory and avoid overwritting any given intermediate inputs.

asked_outs
When true, evictions may kick in (unless disabled by configurations), otherwise, evictions (along with
prefect-evictions check) are skipped.

__abstractmethods__ = frozenset()

__dict__ = mappingproxy({'__module__': 'graphtik.network', '__doc__': "\n A pre-compiled list of operation steps that can :term:`execute` for the given inputs/outputs.\n\n It is the result of the network's :term:`compilation` phase.\n\n Note the execution plan's attributes are on purpose immutable tuples.\n\n .. attribute:: net\n\n The parent :class:`Network`\n .. attribute:: needs\n\n An :class:`iset` with the input names needed to exist in order to produce all `provides`.\n .. attribute:: provides\n\n An :class:`iset` with the outputs names produces when all `inputs` are given.\n .. attribute:: dag\n\n The regular (not broken) *pruned* subgraph of net-graph.\n .. attribute:: steps\n\n The tuple of operation-nodes & *instructions* needed to evaluate\n the given inputs & asked outputs, free memory and avoid overwritting\n any given intermediate inputs.\n .. attribute:: asked_outs\n\n When true, :term:`evictions` may kick in (unless disabled by :term:`configurations`),\n otherwise, *evictions* (along with prefect-evictions check) are skipped.\n ", '_build_pydot': <function ExecutionPlan._build_pydot>, '__repr__': <function ExecutionPlan.__repr__>, 'validate': <function ExecutionPlan.validate>, '_check_if_aborted': <function ExecutionPlan._check_if_aborted>, '_prepare_tasks': <function ExecutionPlan._prepare_tasks>, '_handle_task': <function ExecutionPlan._handle_task>, '_execute_thread_pool_barrier_method': <function ExecutionPlan._execute_thread_pool_barrier_method>, '_execute_sequential_method': <function ExecutionPlan._execute_sequential_method>, 'execute': <function ExecutionPlan.execute>, '__dict__': <attribute '__dict__' of 'ExecutionPlan' objects>, '__abstractmethods__': frozenset(), '_abc_impl': <_abc_data object>})

__module__ = 'graphtik.network'

__repr__()
Return a nicely formatted representation string

_abc_impl = <_abc_data object>

_build_pydot(**kws)

34 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

_check_if_aborted(solution)

_execute_sequential_method(solution: graphtik.network.Solution)
This method runs the graph one operation at a time in a single thread

Parameters solution – must contain the input values only, gets modified

_execute_thread_pool_barrier_method(solution: graphtik.network.Solution)
This method runs the graph using a parallel pool of thread executors. You may achieve lower total latency
if your graph is sufficiently sub divided into operations using this method.

Parameters solution – must contain the input values only, gets modified

_handle_task(future, op, solution)→ None
Un-dill parallel task results (if marshalled), and update solution / handle failure.

_prepare_tasks(operations, solution, pool, global_parallel, global_marshal) → Union[Future,
graphtik.network._OpTask, bytes]

Combine ops+inputs, apply marshalling, and submit to execution pool (or not) . . .

based on global/pre-op configs.

execute(named_inputs, outputs=None, *, name=”)→ graphtik.network.Solution

Parameters

• named_inputs – A maping of names –> values that must contain at least the compul-
sory inputs that were specified when the plan was built (but cannot enforce that!). Cloned,
not modified.

• outputs – If not None, they are just checked if possible, based on provides, and
scream if not.

Returns The solution which contains the results of each operation executed +1 for inputs in
separate dictionaries.

Raises ValueError –

• If plan does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

validate(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str, None])
Scream on invalid inputs, outputs or no operations in graph.

Raises ValueError –

• If cannot produce any outputs from the given inputs, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

1.5. API Reference 35

https://docs.python.org/3.8/library/exceptions.html#ValueError
https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

exception graphtik.network.IncompleteExecutionError
Raised by scream_if_incomplete() when netop operations were canceled/failed.

The exception contains 3 arguments:

1. the causal errors and conditions (1st arg),

2. the list of collected exceptions (2nd arg), and

3. the solution instance (3rd argument), to interrogate for more.

__module__ = 'graphtik.network'

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

class graphtik.network.Network(*operations, graph=None)
A graph of operations that can compile an execution plan.

needs
the “base”, all data-nodes that are not produced by some operation

provides
the “base”, all data-nodes produced by some operation

__abstractmethods__ = frozenset()

__init__(*operations, graph=None)

Parameters

• operations – to be added in the graph

• graph – if None, create a new.

Raises ValueError – if dupe operation, with msg:

Operations may only be added once, . . .

__module__ = 'graphtik.network'

__repr__()
Return repr(self).

_abc_impl = <_abc_data object>

_append_operation(graph, operation: graphtik.op.Operation)
Adds the given operation and its data requirements to the network graph.

• Invoked during constructor only (immutability).

• Identities are based on the name of the operation, the names of the operation’s needs, and the names
of the data it provides.

• Adds needs, operation & provides, in that order.

Parameters

• graph – the networkx graph to append to

• operation – operation instance to append

_apply_graph_predicate(graph, predicate)

36 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

_build_execution_steps(pruned_dag, inputs: Collection[T_co], outputs: Op-
tional[Collection[T_co]])→ List[T]

Create the list of operation-nodes & instructions evaluating all

operations & instructions needed a) to free memory and b) avoid overwritting given intermediate inputs.

Parameters

• pruned_dag – The original dag, pruned; not broken.

• outputs – outp-names to decide whether to add (and which) evict-instructions

Instances of _EvictInstructions are inserted in steps between operation nodes to reduce the mem-
ory footprint of solutions while the computation is running. An evict-instruction is inserted whenever a
need is not used by any other operation further down the DAG.

_build_pydot(**kws)

_cached_plans = None
Speed up compile() call and avoid a multithreading issue(?) that is occuring when accessing the dag in
networkx.

_prune_graph(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str,
None], predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None) → Tu-
ple[<sphinx.ext.autodoc.importer._MockObject object at 0x7f0f3dbc4e10>, Collec-
tion[T_co], Collection[T_co], Collection[T_co]]

Determines what graph steps need to run to get to the requested outputs from the provided inputs: -
Eliminate steps that are not on a path arriving to requested outputs; - Eliminate unsatisfied operations:
partial inputs or no outputs needed; - consolidate the list of needs & provides.

Parameters

• inputs – The names of all given inputs.

• outputs – The desired output names. This can also be None, in which case the neces-
sary steps are all graph nodes that are reachable from the provided inputs.

• predicate – the node predicate is a 2-argument callable(op, node-data) that should
return true for nodes to include; if None, all nodes included.

Returns

a 3-tuple with the pruned_dag & the needs/provides resolved based on the given in-
puts/outputs (which might be a subset of all needs/outputs of the returned graph).

Use the returned needs/provides to build a new plan.

Raises ValueError –

• if outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

_topo_sort_nodes(dag)→ List[T]
Topo-sort dag respecting operation-insertion order to break ties.

compile(inputs: Union[Collection[T_co], str, None] = None, outputs: Union[Collection[T_co], str,
None] = None, predicate=None)→ graphtik.network.ExecutionPlan

Create or get from cache an execution-plan for the given inputs/outputs.

See _prune_graph() and _build_execution_steps() for detailed description.

Parameters

• inputs – A collection with the names of all the given inputs. If None‘, all inputs that
lead to given outputs are assumed. If string, it is converted to a single-element collection.

1.5. API Reference 37

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• outputs – A collection or the name of the output name(s). If None‘, all reachable nodes
from the given inputs are assumed. If string, it is converted to a single-element collection.

• predicate – the node predicate is a 2-argument callable(op, node-data) that should
return true for nodes to include; if None, all nodes included.

Returns the cached or fresh new execution plan

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

• If solution does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

class graphtik.network.Solution(plan, input_values)
Collects outputs from operations, preserving overwrites.

plan
the plan that produced this solution

executed
A dictionary with keys the operations executed, and values their status:

• no key: not executed yet

• value None: execution ok

• value Exception: execution failed

canceled
A sorted set of canceled operations due to upstream failures.

finalized
a flag denoting that this instance cannot accept more results (after the finalized() has been invoked)

__abstractmethods__ = frozenset()

__delitem__(key)

__init__(plan, input_values)
Initialize a ChainMap by setting maps to the given mappings. If no mappings are provided, a single empty
dictionary is used.

__module__ = 'graphtik.network'

__repr__()
Return repr(self).

_abc_impl = <_abc_data object>

_build_pydot(**kws)
delegate to network

finalize()
invoked only once, after all ops have been executed

38 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

is_failed(op)

operation_executed(op, outputs)
Invoked once per operation, with its results.

It will update executed with the operation status and if outputs were partials, it will update canceled
with the unsatisfied ops downstream of op.

Parameters

• op – the operation that completed ok

• outputs – The names of the outputs values the op‘ actually produced, which may be a
subset of its provides. Sideffects are not considered.

operation_failed(op, ex)
Invoked once per operation, with its results.

It will update executed with the operation status and the canceled with the unsatisfied ops down-
stream of op.

overwrites
The data in the solution that exist more than once.

A “virtual” property to a dictionary with keys the names of values that exist more than once, and values,
all those values in a list, ordered:

• before finished(), as computed;

• after finished(), in reverse.

scream_if_incomplete()
Raise a IncompleteExecutionError when netop operations failed/canceled.

class graphtik.network._DataNode
Dag node naming a data-value produced or required by an operation.

__module__ = 'graphtik.network'

__repr__()
Return repr(self).

__slots__ = ()

class graphtik.network._EvictInstruction
A step in the ExecutionPlan to evict a computed value from the solution.

It’s a step in ExecutionPlan.steps for the data-node str that frees its data-value from solution after it is
no longer needed, to reduce memory footprint while computing the graph.

__module__ = 'graphtik.network'

__repr__()
Return repr(self).

__slots__ = ()

class graphtik.network._OpTask(op, sol, solid)
Mimic concurrent.futures.Future for sequential execution.

This intermediate class is needed to solve pickling issue with process executor.

__call__()
Call self as a function.

1.5. API Reference 39

https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

__init__(op, sol, solid)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'graphtik.network'

__repr__()
Return repr(self).

__slots__ = ('op', 'sol', 'result', 'solid')

get()
Call self as a function.

logname = 'graphtik.network'

marshalled()

op

result

sol

solid

graphtik.network._do_task(task)
Un-dill the simpler _OpTask & Dill the results, to pass through pool-processes.

See https://stackoverflow.com/a/24673524/548792

graphtik.network._isDebugLogging()

graphtik.network._optionalized(graph, data)
Retain optionality of a data node based on all needs edges.

graphtik.network._unsatisfied_operations(dag, inputs: Collection[T_co])→ List[T]
Traverse topologically sorted dag to collect un-satisfied operations.

Unsatisfied operations are those suffering from ANY of the following:

• They are missing at least one compulsory need-input. Since the dag is ordered, as soon as we’re on an
operation, all its needs have been accounted, so we can get its satisfaction.

• Their provided outputs are not linked to any data in the dag. An operation might not have any output
link when _prune_graph() has broken them, due to given intermediate inputs.

Parameters

• dag – a graph with broken edges those arriving to existing inputs

• inputs – an iterable of the names of the input values

Returns a list of unsatisfied operations to prune

graphtik.network._yield_datanodes(nodes)
May scan dag nodes.

graphtik.network.collect_requirements(graph)→ Tuple[<sphinx.ext.autodoc.importer._MockObject
object at 0x7f0f3dbc4390>,
<sphinx.ext.autodoc.importer._MockObject object at
0x7f0f3dbc4390>]

Collect & split datanodes in (possibly overlapping) needs/provides.

graphtik.network.is_endure_operations()→ Optional[bool]

graphtik.network.is_marshal_tasks()→ Optional[bool]

40 Chapter 1. Lightweight computation graphs for Python

https://stackoverflow.com/a/24673524/548792

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

graphtik.network.is_parallel_tasks()→ Optional[bool]

graphtik.network.is_reschedule_operations()→ Optional[bool]

graphtik.network.is_skip_evictions()→ Optional[bool]

graphtik.network.log = <Logger graphtik.network (WARNING)>
If this logger is eventually DEBUG-enabled, the string-representation of network-objects (network, plan, solu-
tion) is augmented with children’s details.

graphtik.network.yield_ops(nodes)
May scan (preferably) plan.steps or dag nodes.

1.5.5 Module: plot

Plotting of graphtik graphs.

graphtik.plot.build_pydot(graph, steps=None, inputs=None, outputs=None, solution=None,
title=None, node_props=None, edge_props=None, clusters=None, leg-
end_url=’https://graphtik.readthedocs.io/en/latest/_images/GraphtikLegend.svg’)
→ <sphinx.ext.autodoc.importer._MockObject object at
0x7f0f3dd86f28>

Build a Graphviz out of a Network graph/steps/inputs/outputs and return it.

See Plotter.plot() for the arguments, sample code, and the legend of the plots.

graphtik.plot.default_jupyter_render = {'svg_container_styles': '', 'svg_element_styles': 'width: 100%; height: 300px;', 'svg_pan_zoom_json': '{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}'}
A nested dictionary controlling the rendering of graph-plots in Jupyter cells,

as those returned from Plotter.plot() (currently as SVGs). Either modify it in place, or pass another one
in the respective methods.

The following keys are supported.

Parameters

• svg_pan_zoom_json – arguments controlling the rendering of a zoomable SVG in
Jupyter notebooks, as defined in https://github.com/ariutta/svg-pan-zoom#how-to-use if
None, defaults to string (also maps supported):

"{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}"

• svg_element_styles – mostly for sizing the zoomable SVG in Jupyter notebooks.
Inspect & experiment on the html page of the notebook with browser tools. if None, defaults
to string (also maps supported):

"width: 100%; height: 300px;"

• svg_container_styles – like svg_element_styles, if None, defaults to empty string
(also maps supported).

graphtik.plot.legend(filename=None, show=None, jupyter_render: Mapping[KT, VT_co] = None,
arch_url=’https://graphtik.readthedocs.io/en/latest/arch.html’)

Generate a legend for all plots (see Plotter.plot() for args)

Parameters arch_url – the url to the architecture section explaining graphtik glossary.

See render_pydot() for the rest arguments.

graphtik.plot.quote_dot_word(word: Any)
Workaround pydot parsing of node-id & labels by encoding as HTML.

1.5. API Reference 41

https://github.com/ariutta/svg-pan-zoom#how-to-use

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• pydot library does not quote DOT-keywords anywhere (pydot#111).

• Char : denote port/compass-points and break IDs (pydot#224).

• Non-strings are not quoted_if_necessary by pydot.

Attention: It does not correctly handle ID:port:compass-point format.

See https://www.graphviz.org/doc/info/lang.html)

graphtik.plot.render_pydot(dot: <sphinx.ext.autodoc.importer._MockObject object at
0x7f0f3dd86c18>, filename=None, show=False, jupyter_render:
str = None)

Plot a Graphviz dot in a matplotlib, in file or return it for Jupyter.

Parameters

• dot – the pre-built Graphviz pydot.Dot instance

• filename (str) – Write diagram into a file. Common extensions are .png .dot .
jpg .jpeg .pdf .svg call plot.supported_plot_formats() for more.

• show – If it evaluates to true, opens the diagram in a matplotlib window. If it equals -1, it
returns the image but does not open the Window.

• jupyter_render – a nested dictionary controlling the rendering of graph-plots in
Jupyter cells. If None, defaults to default_jupyter_render (you may modify those
in place and they will apply for all future calls).

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px;
→˓width: 100%"})

Returns the matplotlib image if show=-1, or the dot.

See Plotter.plot() for sample code.

graphtik.plot.supported_plot_formats()→ List[str]
return automatically all pydot extensions

1.5.6 Module: config

Configurations for network execution, and utilities on them.

graphtik.config.abort_run()
Sets the abort run global flag, to halt all currently or future executing plans.

This global flag is reset when any NetworkOperation.compute() is executed, or manually, by calling
reset_abort().

graphtik.config.evictions_skipped(enabled)
Like set_skip_evictions() as a context-manager to reset old value.

graphtik.config.get_execution_pool()→ Optional[Pool]
Get the process-pool for parallel plan executions.

graphtik.config.is_abort()
Return True if networks have been signaled to stop execution.

42 Chapter 1. Lightweight computation graphs for Python

https://www.graphviz.org/doc/info/lang.html
https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

graphtik.config.is_endure_operations()→ Optional[bool]
see set_endure_operations()

graphtik.config.is_marshal_tasks()→ Optional[bool]
see set_marshal_tasks()

graphtik.config.is_parallel_tasks()→ Optional[bool]
see set_parallel_tasks()

graphtik.config.is_reschedule_operations()→ Optional[bool]
see set_reschedule_operations()

graphtik.config.is_skip_evictions()→ Optional[bool]
see set_skip_evictions()

graphtik.config.operations_endured(enabled)
Like set_endure_operations() as a context-manager to reset old value.

graphtik.config.operations_reschedullled(enabled)
Like set_reschedule_operations() as a context-manager to reset old value.

graphtik.config.reset_abort()
Reset the abort run global flag, to permit plan executions to proceed.

graphtik.config.set_endure_operations(enabled)
Enable/disable globally endurance to keep executing even if some operations fail.

Parameters enable –

• If None (default), respect the flag on each operation;

• If true/false, force it for all operations.

Returns a “reset” token (see ContextVar.set())

.

graphtik.config.set_execution_pool(pool: Optional[Pool])
Set the process-pool for parallel plan executions.

You may have to :also func:set_marshal_tasks() to resolve pickling issues.

graphtik.config.set_marshal_tasks(enabled)
Enable/disable globally marshalling of parallel operations, . . .

inputs & outputs with dill, which might help for pickling problems.

Parameters enable –

• If None (default), respect the respective flag on each operation;

• If true/false, force it for all operations.

Returns a “reset” token (see ContextVar.set())

graphtik.config.set_parallel_tasks(enabled)
Enable/disable globally parallel execution of operations.

Parameters enable –

• If None (default), respect the respective flag on each operation;

• If true/false, force it for all operations.

Returns a “reset” token (see ContextVar.set())

1.5. API Reference 43

https://dill.readthedocs.io/en/latest/index.html#module-dill

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

graphtik.config.set_reschedule_operations(enabled)
Enable/disable globally rescheduling for operations returning only partial outputs.

Parameters enable –

• If None (default), respect the flag on each operation;

• If true/false, force it for all operations.

Returns a “reset” token (see ContextVar.set())

.

graphtik.config.set_skip_evictions(enabled)
When true, disable globally evictions, to keep all intermediate solution values, . . .

regardless of asked outputs.

Returns a “reset” token (see ContextVar.set())

graphtik.config.tasks_in_parallel(enabled)
Like set_parallel_tasks() as a context-manager to reset old value.

graphtik.config.tasks_marshalled(enabled)
Like set_marshal_tasks() as a context-manager to reset old value.

1.5.7 Module: base

Generic or specific utilities

exception graphtik.base.MultiValueError

graphtik.base.NO_RESULT = <NO_RESULT>
When an operation function returns this special value, it implies operation has no result at all, (otherwise, it
would have been a single result, None).‘

class graphtik.base.Plotter
Classes wishing to plot their graphs should inherit this and . . .

implement property plot to return a “partial” callable that somehow ends up calling plot.
render_pydot() with the graph or any other args bound appropriately. The purpose is to avoid copying
this function & documentation here around.

plot(filename=None, show=False, jupyter_render: Union[None, Mapping[KT, VT_co], str] = None,
**kws)

Entry-point for plotting ready made operation graphs.

Parameters

• filename (str) – Write diagram into a file. Common extensions are .png .dot
.jpg .jpeg .pdf .svg call plot.supported_plot_formats() for more.

• show – If it evaluates to true, opens the diagram in a matplotlib window. If it equals -1, it
plots but does not open the Window.

• inputs – an optional name list, any nodes in there are plotted as a “house”

• outputs – an optional name list, any nodes in there are plotted as an “inverted-house”

• solution – an optional dict with values to annotate nodes, drawn “filled” (currently
content not shown, but node drawn as “filled”). It extracts more infos from a Solution
instance, such as, if solution has an executed attribute, operations contained in it are
drawn as “filled”.

44 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• title – an optional string to display at the bottom of the graph

• node_props – an optional nested dict of Graphviz attributes for certain nodes

• edge_props – an optional nested dict of Graphviz attributes for certain edges

• clusters – an optional mapping of nodes –> cluster-names, to group them

• jupyter_render – a nested dictionary controlling the rendering of graph-plots in
Jupyter cells, if None, defaults to jupyter_render (you may modify it in place and
apply for all future calls).

• legend_url – a URL to the graphtik legend; if it evaluates to false, none is added.

Returns

a pydot.Dot instance (for for API reference visit: https://pydotplus.readthedocs.io/reference.
html#pydotplus.graphviz.Dot)

Tip: The pydot.Dot instance returned is rendered directly in Jupyter/IPython notebooks
as SVG images.

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px;
→˓width: 100%"})

Check default_jupyter_render for defaults.

Note that the graph argument is absent - Each Plotter provides its own graph internally; use directly
render_pydot() to provide a different graph.

NODES:

oval function

egg subgraph operation

house given input

inversed-house asked output

polygon given both as input & asked as output (what?)

square intermediate data, neither given nor asked.

red frame evict-instruction, to free up memory.

filled data node has a value in solution OR function has been executed.

thick frame function/data node in execution steps.

ARROWS

solid black arrows dependencies (source-data need-ed by target-operations, sources-operations provides
target-data)

dashed black arrows optional needs

blue arrows sideffect needs/provides

wheat arrows broken dependency (provide) during pruning

green-dotted arrows execution steps labeled in succession

1.5. API Reference 45

https://pypi.org/project/pydot/
https://pydotplus.readthedocs.io/reference.html#pydotplus.graphviz.Dot
https://pydotplus.readthedocs.io/reference.html#pydotplus.graphviz.Dot

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

To generate the legend, see legend().

Sample code:

>>> from graphtik import compose, operation
>>> from graphtik.modifiers import optional
>>> from operator import add

>>> netop = compose("netop",
... operation(name="add", needs=["a", "b1"], provides=["ab1"])(add),
... operation(name="sub", needs=["a", optional("b2")], provides=["ab2
→˓"])(lambda a, b=1: a-b),
... operation(name="abb", needs=["ab1", "ab2"], provides=["asked"])(add),
...)

>>> netop.plot(show=True); # plot just the graph in a
→˓matplotlib window # doctest: +SKIP
>>> inputs = {'a': 1, 'b1': 2}
>>> solution = netop(**inputs) # now plots will include the
→˓execution-plan

>>> netop.plot('plot1.svg', inputs=inputs, outputs=['asked', 'b1'],
→˓solution=solution); # doctest: +SKIP
>>> dot = netop.plot(solution=solution); # just get the `pydot.Dot` object,
→˓renderable in Jupyter
>>> print(dot)
digraph G {

fontname=italic;
label=<netop>;
<a> [fillcolor=wheat, shape=invhouse, style=filled, tooltip=1];

...

class graphtik.base.Token(*args)
Guarantee equality, not(!) identity, across processes.

hashid

graphtik.base.aslist(i, argname, allowed_types=<class ’list’>)
Utility to accept singular strings as lists, and None –> [].

graphtik.base.astuple(i, argname, allowed_types=<class ’tuple’>)

graphtik.base.jetsam(ex, locs, *salvage_vars, annotation=’jetsam’, **salvage_mappings)
Annotate exception with salvaged values from locals() and raise!

Parameters

• ex – the exception to annotate

• locs – locals() from the context-manager’s block containing vars to be salvaged in
case of exception

ATTENTION: wrapped function must finally call locals(), because locals dictionary
only reflects local-var changes after call.

• annotation – the name of the attribute to attach on the exception

• salvage_vars – local variable names to save as is in the salvaged annotations dictionary.

• salvage_mappings – a mapping of destination-annotation-keys –> source-locals-keys;
if a source is callable, the value to salvage is retrieved by calling value(locs). They

46 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

take precendance over‘salvage_vars‘.

Raises any exception raised by the wrapped function, annotated with values assigned as attributes
on this context-manager

• Any attributes attached on this manager are attached as a new dict on the raised exception as new jetsam
attribute with a dict as value.

• If the exception is already annotated, any new items are inserted, but existing ones are preserved.

Example:

Call it with managed-block’s locals() and tell which of them to salvage in case of errors:

try:
a = 1
b = 2
raise Exception()

exception Exception as ex:
jetsam(ex, locals(), "a", b="salvaged_b", c_var="c")
raise

And then from a REPL:

import sys
sys.last_value.jetsam
{'a': 1, 'salvaged_b': 2, "c_var": None}

** Reason:**

Graphs may become arbitrary deep. Debugging such graphs is notoriously hard.

The purpose is not to require a debugger-session to inspect the root-causes (without precluding one).

Naively salvaging values with a simple try/except block around each function, blocks the debugger from landing
on the real cause of the error - it would land on that block; and that could be many nested levels above it.

1.6 Graphtik Changelog

1.6.1 TODOs

• See #1.

1.6.2 GitHub Releases

https://github.com/pygraphkit/graphtik/releases

1.6.3 Changelog

v5.3.0 (03 Mar 2020, @ankostis): stuck in PARALLEL, fix Impossible Outs, plot quoting, legend node

• FIX(NET): PARALLEL was ALWAYS enabled.

1.6. Graphtik Changelog 47

https://github.com/pygraphkit/graphtik/issues/1
https://github.com/pygraphkit/graphtik/releases

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• FIX(PLOT): workaround pydot parsing of node-ID & labels (see pydot#111 about DOT-keywords & py-
dot#224 about colons :) by converting IDs to HTML-strings; additionally, this project did not follow Graphviz
grammatical-rules for IDs.

• FIX(NET): impossible outs (outputs that cannot be produced from given inputs) were not raised!

• enh(plot): clicking the background of a diagram would link to the legend url, which was annoying; replaced
with a separate “legend” node.

v5.2.1 (28 Feb 2020, @ankostis): fix plan cache on skip-evictions, PY3.8 TCs, docs

• FIX(net): Execution-plans were cached also the transient is_skip_evictions() configurations (instead
of just whether no-outputs were asked).

• doc(readme): explain “fork” status in the opening.

• ENH(travis): run full tests from Python-3.7–> Python-3.8.

v5.2.0 (27 Feb 2020, @ankostis): Map needs inputs –> args, SPELLCHECK

• FEAT(modifiers): optionals and new modifier arg can now fetch values from inputs into differently-named
arguments of operation functions.

– refact: decouple varargs from optional modifiers hierarchy.

• REFACT(OP): preparation of NEEDS –> function-args happens once for each argument, allowing to report all
errors at once.

• feat(base): +MultiValueError exception class.

• DOC(modifiers,arch): modifiers were not included in “API reference”, nor in the glossary sections.

• FIX: spell-check everything, and add all custom words in the VSCode settings file .vscode.settings.
json.

v5.1.0 (22 Jan 2020, @ankostis): accept named-tuples/objects provides

• ENH(OP): flag returns_dict handles also named-tuples & objects (__dict__).

v5.0.0 (31 Dec 2019, @ankostis): Method–>Parallel, all configs now per op flags; Screaming Solu-
tions on fails/partials

• BREAK(NETOP): compose(method="parallel") --> compose(parallel=None/False/
True) and DROP netop.set_execution_method(method); parallel now also controlled with the
global set_parallel_tasks() configurations function.

– feat(jetsam): report task executed in raised exceptions.

• break(netop): rename netop.narrowed() --> withset() toi mimic Operation API.

• break: rename flags:

– reschedule --> rescheduleD

– marshal --> marshalLED.

• break: rename global configs, as context-managers:

– marshal_parallel_tasks --> tasks_marshalled

48 Chapter 1. Lightweight computation graphs for Python

https://github.com/pydot/pydot/issues/111
https://github.com/pydot/pydot/issues/224
https://github.com/pydot/pydot/issues/224

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

– endure_operations --> operations_endured

• FIX(net, plan,.TC): global skip evictions flag were not fully obeyed (was untested).

• FIX(OP): revamped zipping of function outputs with expected provides, for all combinations of rescheduled,
NO_RESULT & returns dictionary flags.

• configs:

– refact: extract configs in their own module.

– refact: make all global flags tri-state (None, False, True), allowing to “force” operation flags when
not None. All default to None (false).

• ENH(net, sol, logs): include a “solution-id” in revamped log messages, to facilitate developers to discover issues
when multiple netops are running concurrently. Heavily enhanced log messages make sense to the reader of all
actions performed.

• ENH(plot): set toolltips with repr(op) to view all operation flags.

• FIX(TCs): close process-pools; now much more TCs for parallel combinations of threaded, process-pool &
marshalled.

• ENH(netop,net): possible to abort many netops at once, by resetting abort flag on every call of
NetworkOperation.compute() (instead of on the first stopped netop).

• FEAT(SOL): scream_if_incomplete() will raise the new IncompleteExecutionError excep-
tion if failures/partial-outs of endured/rescheduled operations prevented all operations to complete; exception
message details causal errors and conditions.

• feat(build): +‘‘all‘‘ extras.

• FAIL: x2 multi-threaded TCs fail spuriously with “inverse dag edges”:

– test_multithreading_plan_execution()

– test_multi_threading_computes()

both marked as xfail.

v4.4.1 (22 Dec 2019, @ankostis): bugfix debug print

• fix(net): had forgotten a debug-print on every operation call.

• doc(arch): explain parallel & the need for marshalling with process pools.

v4.4.0 (21 Dec 2019, @ankostis): RESCHEDULE for PARTIAL Outputs, on a per op basis

• [x] dynamic Reschedule after operations with partial outputs execute.

• [x] raise after jetsam.

• [x] plots link to legend.

• [x] refact netop

• [x] endurance per op.

• [x] endurance/reschedule for all netop ops.

• [x] merge _Rescheduler into Solution.

• [x] keep order of outputs in Solution even for parallels.

• [x] keep solution layers ordered also for parallel.

1.6. Graphtik Changelog 49

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• [x] require user to create & enter pools.

• [x] FIX pickling THREAD POOL –>Process.

Details

• FIX(NET): keep Solution’s insertion order also for PARALLEL executions.

• FEAT(NET, OP): rescheduled operations with partial outputs; they must have FunctionalOperation.
reschedule set to true, or else they will fail.

• FEAT(OP, netop): specify endurance/reschedule on a per operation basis, or collectively for all operations
grouped under some netop.

• REFACT(NETOP):

– feat(netop): new method NetworkOperation.compile(), delegating to same-named method of
network.

– drop(net): method Net.narrowed(); remember netop.narrowed(outputs+predicate) and apply them
on netop.compute() & netop.compile().

* PROS: cache narrowed plans.

* CONS: cannot review network, must review plan of (new) netop.compile().

– drop(netop): inputs args in narrowed() didn’t make much sense, leftover from “unvarying netops”; but
exist ni netop.compile().

– refact(netop): move net-assembly from compose() –> NetOp cstor; now resched-
ule/endured/merge/method args in cstor.

• NET,OP,TCs: FIX PARALLEL POOL CONCURRENCY

– Network:

* feat: +marshal +_OpTask

* refact: plan._call_op –> _handle_task

* enh: Make abort run variable a shared-memory Value.

– REFACT(OP,.TC): not a namedtuple, breaks pickling.

– ENH(pool): Pool

– FIX: compare Tokens with is –> ==, or else, it won’t work for sub-processes.

– TEST: x MULTIPLE TESTS

* +4 tags: parallel, thread, proc, marshal.

* many uses of exemethod.

• FIX(build): PyPi README check did not detect forbidden raw directives, and travis auto-deployments were
failing.

• doc(arch): more terms.

v4.3.0 (16 Dec 2019, @ankostis): Aliases

• FEAT(OP): support “aliases” of provides, to avoid trivial pipe-through operations, just to rename & match
operations.

50 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

v4.2.0 (16 Dec 2019, @ankostis): ENDURED Execution

• FEAT(NET): when set_endure_operations() configuration is set to true, a netop will keep on calculat-
ing solution, skipping any operations downstream from failed ones. The solution eventually collects all failures
in Solution.failures attribute.

• ENH(DOC,plot): Links in Legend and Architecture Workflow SVGs now work, and delegate to architecture
terms.

• ENH(plot): mark overwrites, failed & canceled in repr() (see endurance).

• refact(conf): fully rename configuration operation skip_evictions.

• REFACT(jetsam): raise after jetsam in situ, better for Readers & Linters.

• enh(net): improve logging.

v4.1.0 (13 Dec 2019, @ankostis): ChainMap Solution for Rewrites, stable TOPOLOGICAL sort

• FIX(NET): TOPOLOGICALLY-sort now break ties respecting operations insertion order.

• ENH(NET): new Solution class to collect all computation values, based on a collections.ChainMap
to distinguish outputs per operation executed:

– ENH(NETOP): compute() return Solution, consolidating:

* overwrites,

* executed operations, and

* the generating plan.

– drop(net): _PinInstruction class is not needed.

– drop(netop): overwrites_collector parameter; now in Solution.overwrites().

– ENH(plot): Solution is also a Plotter; e.g. use sol.plot(...)`.

• DROP(plot): executed arg from plotting; now embedded in solution.

• ENH(PLOT.jupyter,doc): allow to set jupyter graph-styling selectively; fix instructions for jupyter cell-resizing.

• fix(plan): time-keeping worked only for sequential execution, not parallel. Refactor it to happen centrally.

• enh(NET,.TC): Add PREDICATE argument also for compile().

• FEAT(DOC): add GLOSSARY as new Architecture section, linked from API HEADERS.

v4.0.1 (12 Dec 2019, @ankostis): bugfix

• FIX(plan): plan.repr() was failing on empty plans.

• fix(site): minor badge fix & landing diagram.

v4.0.0 (11 Dec 2019, @ankostis): NESTED merge, revert v3.x Unvarying, immutable OPs, “color”
nodes

• BREAK/ENH(NETOP): MERGE NESTED NetOps by collecting all their operations in a single Network; now
children netops are not pruned in case some of their needs are unsatisfied.

– feat(op): support multiple nesting under other netops.

1.6. Graphtik Changelog 51

https://docs.python.org/3.8/library/collections.html#collections.ChainMap

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• BREAK(NETOP): REVERT Unvarying NetOps+base-plan, and narrow Networks instead; netops were too
rigid, code was cumbersome, and could not really pinpoint the narrowed needs always correctly (e.g. when
they were also provides).

– A netop always narrows its net based on given inputs/outputs. This means that the net might be a subset
of the one constructed out of the given operations. If you want all nodes, don’t specify needs/provides.

– drop 3 ExecutionPlan attributes: plan, needs, plan

– drop recompile flag in Network.compute().

– feat(net): new method Network.narrowed() clones and narrows.

– Network() cstor accepts a (cloned) graph to support narrowed() methods.

• BREAK/REFACT(OP): simplify hierarchy, make Operation fully abstract, without name or requirements.

– enh: make FunctionalOperation IMMUTABLE, by inheriting from class:.namedtuple.

• refact(net): consider as netop needs also intermediate data nodes.

• FEAT(#1, net, netop): support pruning based on arbitrary operation attributes (e.g. assign “colors” to nodes and
solve a subset each time).

• enh(netop): repr() now counts number of contained operations.

• refact(netop): rename netop.narrow() --> narrowed()

• drop(netop): don’t topologically-sort sub-networks before merging them; might change some results, but gives
control back to the user to define nets.

v3.1.0 (6 Dec 2019, @ankostis): cooler prune()

• break/refact(NET): scream on plan.execute() (not net.prune()) so as calmly solve needs vs provides,
based on the given inputs/outputs.

• FIX(ot): was failing when plotting graphs with ops without fn set.

• enh(net): minor fixes on assertions.

v3.0.0 (2 Dec 2019, @ankostis): UNVARYING NetOperations, narrowed, API refact

• NetworkOperations:

– BREAK(NET): RAISE if the graph is UNSOLVABLE for the given needs & provides! (see “raises” list
of compute()).

– BREAK: NetworkOperation.__call__() accepts solution as keyword-args, to mimic API of
Operation.__call__(). outputs keyword has been dropped.

Tip: Use NetworkOperation.compute() when you ask different outputs, or set the recompile
flag if just different inputs are given.

Read the next change-items for the new behavior of the compute() method.

– UNVARYING NetOperations:

* BREAK: calling method NetworkOperation.compute() with a single argument is now UN-
VARYING, meaning that all needs are demanded, and hence, all provides are produced, unless the
recompile flag is true or outputs asked.

52 Chapter 1. Lightweight computation graphs for Python

https://github.com/pygraphkit/graphtik/issues/1

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

* BREAK: net-operations behave like regular operations when nested inside another netop, and always
produce all their provides, or scream if less inputs than needs are given.

* ENH: a newly created or cloned netop can be narrowed() to specific needs & provides, so as not
needing to pass outputs on every call to compute().

* feat: implemented based on the new “narrowed” NetworkOperation.plan attribute.

– FIX: netop needs are not all optional by default; optionality applied only if all underlying operations have
a certain need as optional.

– FEAT: support function **args with 2 new modifiers vararg & varargs, acting like optional
(but without feeding into underlying functions like keywords).

– BREAK(yahoo#12): simplify compose API by turning it from class –> function; all args and operations
are now given in a single compose() call.

– REFACT(net, netop): make Network IMMUTABLE by appending all operations together, in
NetworkOperation constructor.

– ENH(net): public-size _prune_graph() –> Network.prune()`() which can be used to interro-
gate needs & provides for a given graph. It accepts None inputs & outputs to auto-derive them.

• FIX(SITE): autodocs API chapter were not generated in at all, due to import errors, fixed by using
autodoc_mock_imports on networkx, pydot & boltons libs.

• enh(op): polite error-,msg when calling an operation with missing needs (instead of an abrupt KeyError).

• FEAT(CI): test also on Python-3.8

v2.3.0 (24 Nov 2019, @ankostis): Zoomable SVGs & more op jobs

• FEAT(plot): render Zoomable SVGs in jupyter(lab) notebooks.

• break(netop): rename execution-method "sequential" --> None.

• break(netop): move overwrites_collector & method args from netop.__call__() –> cstor

• refact(netop): convert remaining **kwargs into named args, tighten up API.

v2.2.0 (20 Nov 2019, @ankostis): enhance OPERATIONS & restruct their modules

• REFACT(src): split module nodes.py –> op.py + netop.py and move Operation from base.py –>
op.py, in order to break cycle of base(op) <– net <– netop, and keep utils only in base.py.

• ENH(op): allow Operations WITHOUT any NEEDS.

• ENH(op): allow Operation FUNCTIONS to return directly Dictionaries.

• ENH(op): validate function Results against operation provides; jetsam now includes results variables:
results_fn & results_op.

• BREAK(op): drop unused Operation._after_init() pickle-hook; use dill instead.

• refact(op): convert Operation._validate() into a function, to be called by clients wishing to automate
operation construction.

• refact(op): replace **kwargs with named-args in class:FunctionalOperation, because it allowed too wide
args, and offered no help to the user.

• REFACT(configs): privatize network._execution_configs; expose more config-methods from base
package.

1.6. Graphtik Changelog 53

https://github.com/yahoo/graphkit/issues/12
http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#confval-autodoc_mock_imports

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

v2.1.1 (12 Nov 2019, @ankostis): global configs

• BREAK: drop Python-3.6 compatibility.

• FEAT: Use (possibly multiple) global configurations for all networks, stored in a contextvars.
ContextVar.

• ENH/BREAK: Use a (possibly) single execution_pool in global-configs.

• feat: add abort flag in global-configs.

• feat: add skip_evictions flag in global-configs.

v2.1.0 (20 Oct 2019, @ankostis): DROP BW-compatible, Restruct modules/API, Plan perfect evic-
tions

The first non pre-release for 2.x train.

• BRAKE API: DROP Operation’s params - use functools.partial() instead.

• BRAKE API: DROP Backward-Compatible Data & Operation classes,

• BRAKE: DROP Pickle workarounds - expected to use dill instead.

• break(jetsam): drop “graphtik_‘ prefix from annotated attribute

• ENH(op): now operation() supported the “builder pattern” with operation.withset().

• REFACT: renamed internal package functional –> nodes and moved classes around, to break cycles easier,
(baseworks as supposed to), not to import early everything, but to fail plot early if pydot dependency missing.

• REFACT: move PLAN and compute() up, from Network --> NetworkOperation.

• ENH(NET): new PLAN BUILDING algorithm produces PERFECT EVICTIONS, that is, it gradually eliminates
from the solution all non-asked outputs.

– enh: pruning now cleans isolated data.

– enh: eviction-instructions are inserted due to two different conditions: once for unneeded data in the past,
and another for unused produced data (those not belonging typo the pruned dag).

– enh: discard immediately irrelevant inputs.

• ENH(net): changed results, now unrelated inputs are not included in solution.

• refact(sideffect): store them as node-attributes in DAG, fix their combination with pinning & eviction.

• fix(parallel): eviction was not working due to a typo 65 commits back!

v2.0.0b1 (15 Oct 2019, @ankostis): Rebranded as Graphtik for Python 3.6+

Continuation of yahoo#30 as yahoo#31, containing review-fixes in huyng/graphkit#1.

Network

• FIX: multithreaded operations were failing due to shared ExecutionPlan.executed.

• FIX: pruning sometimes were inserting plan string in DAG. (not _DataNode).

• ENH: heavily reinforced exception annotations (“jetsam”):

– FIX: (8f3ec3a) outer graphs/ops do not override the inner cause.

54 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/contextvars.html#contextvars.ContextVar
https://docs.python.org/3.8/library/contextvars.html#contextvars.ContextVar
https://github.com/yahoo/graphkit/issues/30
https://github.com/yahoo/graphkit/issues/31

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

– ENH: retrofitted exception-annotations as a single dictionary, to print it in one shot (8f3ec3a & 8d0de1f)

– enh: more data in a dictionary

– TCs: Add thorough TCs (8f3ec3a & b8063e5).

• REFACT: rename Delete–>‘Evict‘, removed Placeholder from data nodes, privatize node-classes.

• ENH: collect “jetsam” on errors and annotate exceptions with them.

• ENH(sideffects): make them always DIFFERENT from regular DATA, to allow to co-exist.

• fix(sideffects): typo in add_op() were mixing needs/provides.

• enh: accept a single string as outputs when running graphs.

Testing & other code:

• TCs: pytest now checks sphinx-site builds without any warnings.

• Established chores with build services:

– Travis (and auto-deploy to PyPi),

– codecov

– ReadTheDocs

v1.3.0 (Oct 2019, @ankostis): NEVER RELEASED: new DAG solver, better plotting & “sideffect”

Kept external API (hopefully) the same, but revamped pruning algorithm and refactored network compute/compile
structure, so results may change; significantly enhanced plotting. The only new feature actually is the sideffect
modifier.

Network:

• FIX(yahoo#18, yahoo#26, yahoo#29, yahoo#17, yahoo#20): Revamped DAG SOLVER to fix bad pruning
described in yahoo#24 & yahoo#25

Pruning now works by breaking incoming provide-links to any given intermediate inputs dropping operations
with partial inputs or without outputs.

The end result is that operations in the graph that do not have all inputs satisfied, they are skipped (in v1.2.4 they
crashed).

Also started annotating edges with optional/sideffects, to make proper use of the underlying networkx graph.

• REFACT(yahoo#21, yahoo#29): Refactored Network and introduced ExecutionPlan to keep compilation
results (the old steps list, plus input/output names).

Moved also the check for when to evict a value, from running the execution-plan, to when building it; thus,
execute methods don’t need outputs anymore.

• ENH(yahoo#26): “Pin* input values that may be overwritten by calculated ones.

This required the introduction of the new _PinInstruction in the execution plan.

1.6. Graphtik Changelog 55

https://github.com/yahoo/graphkit/issues/18
https://github.com/yahoo/graphkit/issues/26
https://github.com/yahoo/graphkit/issues/29
https://github.com/yahoo/graphkit/issues/17
https://github.com/yahoo/graphkit/issues/20
https://github.com/yahoo/graphkit/issues/24
https://github.com/yahoo/graphkit/issues/25
https://github.com/yahoo/graphkit/issues/21
https://github.com/yahoo/graphkit/issues/29
https://github.com/yahoo/graphkit/issues/26

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• FIX(yahoo#23, yahoo#22-2.4.3): Keep consistent order of networkx.DiGraph and sets, to generate deter-
ministic solutions.

Unfortunately, it non-determinism has not been fixed in < PY3.5, just reduced the frequency of spurious failures,
caused by unstable dicts, and the use of subgraphs.

• enh: Mark outputs produced by NetworkOperation’s needs as optional. TODO: subgraph network-
operations would not be fully functional until “optional outputs” are dealt with (see yahoo#22-2.5).

• enh: Annotate operation exceptions with ExecutionPlan to aid debug sessions,

• drop: methods list_layers()/show layers() not needed, repr() is a better replacement.

Plotting:

• ENH(yahoo#13, yahoo#26, yahoo#29): Now network remembers last plan and uses that to overlay graphs with
the internals of the planing and execution:

– execution-steps & order

– evict & pin instructions

– given inputs & asked outputs

– solution values (just if they are present)

– “optional” needs & broken links during pruning

• REFACT: Move all API doc on plotting in a single module, split in 2 phases, build DOT & render DOT

• FIX(yahoo#13): bring plot writing into files up-to-date from PY2; do not create plot-file if given file-extension
is not supported.

• FEAT: path pydot library to support rendering in Jupyter notebooks.

Testing & other code:

• Increased coverage from 77% –> 90%.

• ENH(yahoo#28): use pytest, to facilitate TCs parametrization.

• ENH(yahoo#30): Doctest all code; enabled many assertions that were just print-outs in v1.2.4.

• FIX: operation.__repr__() was crashing when not all arguments had been set - a condition frequently
met during debugging session or failed TCs (inspired by @syamajala’s 309338340).

• enh: Sped up parallel/multithread TCs by reducing delays & repetitions.

Tip: You need pytest -m slow to run those slow tests.

Chore & Docs:

• FEAT: add changelog in CHANGES.rst file, containing flowcharts to compare versions v1.2.4 <--> v1.
3..0.

• enh: updated site & documentation for all new features, comparing with v1.2.4.

• enh(yahoo#30): added “API reference’ chapter.

56 Chapter 1. Lightweight computation graphs for Python

https://github.com/yahoo/graphkit/issues/23
https://github.com/yahoo/graphkit/issues/22
https://travis-ci.org/yahoo/graphkit/builds/594729787
https://github.com/yahoo/graphkit/issues/22
https://github.com/yahoo/graphkit/issues/13
https://github.com/yahoo/graphkit/issues/26
https://github.com/yahoo/graphkit/issues/29
https://github.com/yahoo/graphkit/issues/13
https://pypi.org/project/pydot/
https://github.com/yahoo/graphkit/issues/28
https://github.com/yahoo/graphkit/issues/30
https://github.com/yahoo/graphkit/issues/30

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

• drop(build): sphinx_rtd_theme library is the default theme for Sphinx now.

• enh(build): Add test pip extras.

• sound: https://www.youtube.com/watch?v=-527VazA4IQ, https://www.youtube.com/watch?v=8J182LRi8sU&
t=43s

v1.2.4 (Mar 7, 2018)

• Issues in pruning algorithm: yahoo#24, yahoo#25

• Blocking bug in plotting code for Python-3.x.

• Test-cases without assertions (just prints).

1.2.2 (Mar 7, 2018, @huyng): Fixed versioning

Versioning now is manually specified to avoid bug where the version was not being correctly reflected on pip install
deployments

1.2.1 (Feb 23, 2018, @huyng): Fixed multi-threading bug and faster compute through caching of
find_necessary_steps

We’ve introduced a cache to avoid computing find_necessary_steps multiple times during each inference call.

This has 2 benefits:

• It reduces computation time of the compute call

• It avoids a subtle multi-threading bug in networkx when accessing the graph from a high number of threads.

1.2.0 (Feb 13, 2018, @huyng)

Added set_execution_method(‘parallel’) for execution of graphs in parallel.

1.1.0 (Nov 9, 2017, @huyng)

Update setup.py

1.0.4 (Nov 3, 2017, @huyng): Networkx 2.0 compatibility

Minor Bug Fixes:

• Compatibility fix for networkx 2.0

• net.times now only stores timing info from the most recent run

1.0.3 (Jan 31, 2017, @huyng): Make plotting dependencies optional

• Merge pull request yahoo#6 from yahoo/plot-optional

• make plotting dependencies optional

1.6. Graphtik Changelog 57

https://www.youtube.com/watch?v=-527VazA4IQ
https://www.youtube.com/watch?v=8J182LRi8sU&t=43s
https://www.youtube.com/watch?v=8J182LRi8sU&t=43s
https://github.com/yahoo/graphkit/issues/24
https://github.com/yahoo/graphkit/issues/25
https://github.com/yahoo/graphkit/issues/6

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

1.0.2 (Sep 29, 2016, @pumpikano): Merge pull request yahoo#5 from yahoo/remove-packaging-dep

• Remove ‘packaging’ as dependency

1.0.1 (Aug 24, 2016)

1.0 (Aug 2, 2016, @robwhess)

First public release in PyPi & GitHub.

• Merge pull request yahoo#3 from robwhess/travis-build

• Travis build

58 Chapter 1. Lightweight computation graphs for Python

https://github.com/yahoo/graphkit/issues/3

CHAPTER 2

Quick start

Here’s how to install:

pip install graphtik

OR with dependencies for plotting support (and you need to install Graphviz program separately with your OS tools):

pip install graphtik[plot]

Here’s a Python script with an example Graphtik computation graph that produces multiple outputs (a * b, a - a

* b, and abs(a - a * b) ** 3):

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

Compose the mul, sub, and abspow functions into a computation graph:

>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed
→˓"])
... (partial(abspow, p=3))
...)

Run the graph-operation and request all of the outputs:

>>> graphop(**{'a': 2, 'b': 5})
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

59

https://graphviz.org

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

Run the graph-operation and request a subset of the outputs:

>>> solution = graphop.compute({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
>>> solution
{'a_minus_ab': -8}

. . . and plot the results (if in jupyter, no need to create the file):

>>> solution.plot('graphop.svg')

As you can see, any function can be used as an operation in Graphtik, even ones imported from system modules!

60 Chapter 2. Quick start

Python Module Index

g
graphtik.base, 44
graphtik.config, 42
graphtik.modifiers, 26
graphtik.netop, 31
graphtik.network, 34
graphtik.op, 24
graphtik.plot, 41

61

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

62 Python Module Index

Index

Symbols
_DataNode (class in graphtik.network), 39
_EvictInstruction (class in graphtik.network), 39
_OpTask (class in graphtik.network), 39
__abstractmethods__ (graph-

tik.network.ExecutionPlan attribute), 34
__abstractmethods__ (graphtik.network.Network

attribute), 36
__abstractmethods__ (graphtik.network.Solution

attribute), 38
__call__() (graphtik.network._OpTask method), 39
__delitem__() (graphtik.network.Solution method),

38
__dict__ (graphtik.network.ExecutionPlan attribute),

34
__init__() (graphtik.network.Network method), 36
__init__() (graphtik.network.Solution method), 38
__init__() (graphtik.network._OpTask method), 39
__module__ (graphtik.network.AbortedException at-

tribute), 34
__module__ (graphtik.network.ExecutionPlan at-

tribute), 34
__module__ (graphtik.network.IncompleteExecutionError

attribute), 36
__module__ (graphtik.network.Network attribute), 36
__module__ (graphtik.network.Solution attribute), 38
__module__ (graphtik.network._DataNode attribute),

39
__module__ (graphtik.network._EvictInstruction at-

tribute), 39
__module__ (graphtik.network._OpTask attribute), 40
__repr__() (graphtik.network.ExecutionPlan

method), 34
__repr__() (graphtik.network.Network method), 36
__repr__() (graphtik.network.Solution method), 38
__repr__() (graphtik.network._DataNode method),

39
__repr__() (graphtik.network._EvictInstruction

method), 39

__repr__() (graphtik.network._OpTask method), 40
__slots__ (graphtik.network._DataNode attribute),

39
__slots__ (graphtik.network._EvictInstruction at-

tribute), 39
__slots__ (graphtik.network._OpTask attribute), 40
__str__() (graphtik.network.IncompleteExecutionError

method), 36
__weakref__ (graphtik.network.AbortedException at-

tribute), 34
__weakref__ (graph-

tik.network.IncompleteExecutionError at-
tribute), 36

_abc_impl (graphtik.network.ExecutionPlan at-
tribute), 34

_abc_impl (graphtik.network.Network attribute), 36
_abc_impl (graphtik.network.Solution attribute), 38
_append_operation() (graphtik.network.Network

method), 36
_apply_graph_predicate() (graph-

tik.network.Network method), 36
_build_execution_steps() (graph-

tik.network.Network method), 36
_build_pydot() (graphtik.network.ExecutionPlan

method), 34
_build_pydot() (graphtik.network.Network

method), 37
_build_pydot() (graphtik.network.Solution

method), 38
_cached_plans (graphtik.network.Network at-

tribute), 37
_check_if_aborted() (graph-

tik.network.ExecutionPlan method), 34
_do_task() (in module graphtik.network), 40
_execute_sequential_method() (graph-

tik.network.ExecutionPlan method), 35
_execute_thread_pool_barrier_method()

(graphtik.network.ExecutionPlan method), 35
_handle_task() (graphtik.network.ExecutionPlan

method), 35

63

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

_isDebugLogging() (in module graphtik.network),
40

_optionalized() (in module graphtik.network), 40
_prepare_tasks() (graph-

tik.network.ExecutionPlan method), 35
_prune_graph() (graphtik.network.Network

method), 37
_topo_sort_nodes() (graphtik.network.Network

method), 37
_unsatisfied_operations() (in module graph-

tik.network), 40
_yield_datanodes() (in module graphtik.network),

40

A
abort run, 23
abort_run() (in module graphtik.config), 42
AbortedException, 34
arg (class in graphtik.modifiers), 26
as_renames() (in module graphtik.op), 25
asked_outs (graphtik.network.ExecutionPlan at-

tribute), 34
aslist() (in module graphtik.base), 46
astuple() (in module graphtik.base), 46

B
build_pydot() (in module graphtik.plot), 41

C
canceled (graphtik.network.Solution attribute), 38
canceled operation, 23
collect_requirements() (in module graph-

tik.network), 40
COMPILATION, 20
compile, 20
compile() (graphtik.netop.NetworkOperation

method), 31
compile() (graphtik.network.Network method), 37
compose, 20
compose() (in module graphtik), 13
compose() (in module graphtik.netop), 33
COMPOSITION, 20
computation, 19
COMPUTE, 19
compute() (graphtik.netop.NetworkOperation

method), 32
compute() (graphtik.op.FunctionalOperation

method), 24
compute() (graphtik.op.Operation method), 25
configurations, 21

D
dag, 21
dag (graphtik.network.ExecutionPlan attribute), 34

default_jupyter_render (in module graph-
tik.plot), 41

E
endurance, 23
evictions, 21
evictions_skipped() (in module graphtik.config),

42
execute, 20
execute() (graphtik.network.ExecutionPlan method),

35
executed (graphtik.network.Solution attribute), 38
EXECUTION, 20
execution dag, 21
execution plan, 22
execution pool, 20
execution steps, 21
ExecutionPlan (class in graphtik.network), 34

F
finalize() (graphtik.network.Solution method), 38
finalized (graphtik.network.Solution attribute), 38
FunctionalOperation (class in graphtik.op), 24

G
get() (graphtik.network._OpTask method), 40
get_execution_pool() (in module graph-

tik.config), 42
graph, 21
graphtik.base (module), 44
graphtik.config (module), 42
graphtik.modifiers (module), 26
graphtik.netop (module), 31
graphtik.network (module), 34
graphtik.op (module), 24
graphtik.plot (module), 41

H
hashid (graphtik.base.Token attribute), 46

I
IncompleteExecutionError, 35
inputs, 22
is_abort() (in module graphtik.config), 42
is_endure_operations() (in module graph-

tik.config), 42
is_endure_operations() (in module graph-

tik.network), 40
is_failed() (graphtik.network.Solution method), 38
is_marshal_tasks() (in module graphtik.config),

43
is_marshal_tasks() (in module graphtik.network),

40

64 Index

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

is_parallel_tasks() (in module graphtik.config),
43

is_parallel_tasks() (in module graph-
tik.network), 40

is_reschedule_operations() (in module graph-
tik.config), 43

is_reschedule_operations() (in module graph-
tik.network), 41

is_reschedule_operations() (in module graph-
tik.op), 25

is_skip_evictions() (in module graphtik.config),
43

is_skip_evictions() (in module graph-
tik.network), 41

J
jetsam() (in module graphtik.base), 46

L
last_plan (graphtik.netop.NetworkOperation at-

tribute), 32
legend() (in module graphtik.plot), 41
log (in module graphtik.network), 41
logname (graphtik.network._OpTask attribute), 40

M
marshalled() (graphtik.network._OpTask method),

40
marshalling, 20
modifiers, 22
MultiValueError, 44

N
name (graphtik.netop.NetworkOperation attribute), 32
needs, 22
needs (graphtik.network.ExecutionPlan attribute), 34
needs (graphtik.network.Network attribute), 36
net, 21
net (graphtik.network.ExecutionPlan attribute), 34
netop, 22
network, 22
Network (class in graphtik.network), 36
network graph, 21
network operation, 22
NetworkOperation (class in graphtik.netop), 31
NO_RESULT (in module graphtik.base), 44
node predicate, 23

O
op (graphtik.network._OpTask attribute), 40
operation, 22
Operation (class in graphtik.op), 24
operation (class in graphtik.op), 25

operation_executed() (graphtik.network.Solution
method), 39

operation_failed() (graphtik.network.Solution
method), 39

operations_endured() (in module graph-
tik.config), 43

operations_reschedullled() (in module graph-
tik.config), 43

optional (class in graphtik.modifiers), 27
optionals, 23
outputs, 22
outputs (graphtik.netop.NetworkOperation attribute),

32
overwrites, 21
overwrites (graphtik.network.Solution attribute), 39

P
parallel, 20
parallel execution, 20
partial operation, 23
partial outputs, 23
plan, 22
plan (graphtik.network.Solution attribute), 38
plot() (graphtik.base.Plotter method), 44
Plotter (class in graphtik.base), 44
predicate, 23
predicate (graphtik.netop.NetworkOperation at-

tribute), 32
process pool, 20
provides, 22
provides (graphtik.network.ExecutionPlan attribute),

34
provides (graphtik.network.Network attribute), 36
prune, 23
pruning, 23

Q
quote_dot_word() (in module graphtik.plot), 41

R
render_pydot() (in module graphtik.plot), 42
reparse_operation_data() (in module graph-

tik.op), 26
reschedule, 23
rescheduling, 23
reset_abort() (in module graphtik.config), 43
result (graphtik.network._OpTask attribute), 40
returns dictionary, 22

S
scream_if_incomplete() (graph-

tik.network.Solution method), 39
sequential, 20

Index 65

graphtik Documentation, Release src: 5.2.2, git: b47fd1f

set_endure_operations() (in module graph-
tik.config), 43

set_execution_pool() (in module graph-
tik.config), 43

set_marshal_tasks() (in module graphtik.config),
43

set_parallel_tasks() (in module graph-
tik.config), 43

set_reschedule_operations() (in module
graphtik.config), 43

set_skip_evictions() (in module graph-
tik.config), 44

sideffect (class in graphtik.modifiers), 28
sideffects, 23
sol (graphtik.network._OpTask attribute), 40
solid (graphtik.network._OpTask attribute), 40
solution, 21
Solution (class in graphtik.network), 38
solution dag, 21
steps, 21
steps (graphtik.network.ExecutionPlan attribute), 34
supported_plot_formats() (in module graph-

tik.plot), 42

T
task, 20
tasks_in_parallel() (in module graphtik.config),

44
tasks_marshalled() (in module graphtik.config),

44
thread pool, 20
Token (class in graphtik.base), 46

U
unsatisfied operation, 23

V
validate() (graphtik.network.ExecutionPlan

method), 35
vararg (class in graphtik.modifiers), 29
varargs (class in graphtik.modifiers), 30

W
withset() (graphtik.netop.NetworkOperation

method), 32
withset() (graphtik.op.FunctionalOperation

method), 24
withset() (graphtik.op.operation method), 26

Y
yield_ops() (in module graphtik.network), 41

66 Index

	Lightweight computation graphs for Python
	Operations
	The operation builder factory
	Operations are just functions
	Specifying graph structure: provides and needs
	Instantiating operations
	Modifiers on operation needs and provides

	Graph Composition
	The compose factory
	Simple composition of operations
	Running a computation graph
	Adding on to an existing computation graph
	More complicated composition: merging computation graphs

	Plotting and Debugging
	Plotting
	Errors & debugging

	Architecture
	API Reference
	Module: op
	Module: modifiers
	Module: netop
	Module: network
	Module: plot
	Module: config
	Module: base

	Graphtik Changelog
	TODOs
	GitHub Releases
	Changelog

	Quick start
	Python Module Index
	Index

